北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
新闻资讯 News
News 新闻详情

LI-2100全自动真空抽提系统的海外之路

日期: 2021-08-27
浏览次数: 60

不同水体的氢氧稳定同位素可用于植物水分利用来源、水汽输送、土壤水运移和补给机制、补给源和地下水机制、水体蒸发、植物蒸腾和土壤蒸发的区分、径流的形成和汇合、重建古气候等方面的研究。因而引起了水文学家,生态学家以及气候学家等的广泛关注。但问题是:在进行水稳定同位素测试之前如何将植物木质部和土壤中的水分无分馏的提取出来?

LI-2100是LICA自主研发的一款全自动真空冷凝抽提系统,且已通过CE认证。从根本上解决了植物和土壤水分提取的难题,克服了传统液氮冷却的繁琐,不仅可以防止同位素分馏,而且安全高效,不会对植物和土壤造成破坏。可与LGR水同位素分析仪和质谱仪配套使用。许多科学家已经结合LI-2100和LGR的水同位素进行了诸多研究。

从研发生产至今,LI-2100在国内已经销售了近百台,国内的科研工作者利用这台仪器发表了诸多文献,得到了用户的众多好评。

随着LI-2100在国内的广泛应用及众多文献的发表,国外的一些科学家也开始关注理加公司研发生产的LI-2100,理加公司也积极在海外推广该产品,由此拉开了LI-2100走出国门、走向海外的序幕。


LI-2100在海外的安装案例

1. 巴西国家空间研究所(INPE)

应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。

LI-2100全自动真空抽提系统的海外之路


科学家简介:

Laura De Simone Borma (劳拉·德·西蒙娜·博尔玛)

1988 年毕业于欧鲁普雷图联邦大学土木工程专业,1991 年获得里约热内卢联邦大学土木工程硕士学位,以及里约热内卢联邦大学土木工程-环境岩土工程博士学位(1998)。自 2009 年起在 INPE(国家空间研究所)担任研究员,从事生态水文学和土壤物理学领域的工作,重点是实地观察陆地和极端天气事件对土壤-植物-大气相互作用以及气候变化、土地利用和覆盖变化的影响。她目前是 INPE 的 PGCST(地球系统科学研究生)和 PGSER(遥感研究生)的教授。协调 CCST/INPE 的生态水文学 (LabEcoh) 和生物地球化学 (LapBio) 实验室。她是 ISMC(国际土壤建模联盟)的成员。她对巴西不同生物群落中土壤-植物-大气相互作用、生态水文学以及水和气候调节的生态系统服务领域的研究感兴趣。


2. 澳大利亚Flinders大学 College of Science and Engineering

LI-2100全自动真空抽提系统的海外之路


应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。

LI-2100全自动真空抽提系统的海外之路

LI-2100在国内的安装案例

1. 中国煤炭研究所

应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。

LI-2100全自动真空抽提系统的海外之路


2. 中国科学院西双版纳热带植物园

应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。

LI-2100全自动真空抽提系统的海外之路


3. 中国林业科学研究院亚热带林业研究所

应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。

LI-2100全自动真空抽提系统的海外之路

4. 沈阳气象局

应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。

LI-2100全自动真空抽提系统的海外之路


5. 广西植物园

应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。

LI-2100全自动真空抽提系统的海外之路


发表文献

1. 周盼盼, 张明军, 王圣杰等. 2016. 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35(11): 2942-2951.

2. 李亚飞, 于静洁, 陆凯等. 2017. 额济纳三角洲胡杨和多枝柽柳水分来源解析. 植物生态学报, 41(5): 519-528.

3. 李桐, 邱国玉. 2018. 基于稳定氢氧同位素的盐水与纯水蒸发差异分析. 热带地理, 38 (6): 857-865.

4. 霍伟杰, 蒲俊兵, 李建鸿等. 2019. 断陷盆地高原面典型岩溶洼地旱季土壤水氢氧同位素时空差异特征.中国岩溶,38(3): 307-317.

5. 戴军杰, 章新平, 罗紫东. 2019. 长沙地区樟树林土壤水稳定同位素特征及其对土壤水分运动的指示. 环境科学研究,32(6): 974-983.

6. 苏鹏燕, 张明军, 王圣杰等. 2020. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 31(6):1835-1843.

7. 孜尔蝶·巴合提, 贾国栋, 余新晓. 2020. 基于稳定同位素分析不同退化程度小叶杨水分来源, 应用生态学报, 31(6):1807-1816.

8. 王露霞, 梁杏, 李静. 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710.

9. 王锐, 章新平, 戴军杰. 2020. 亚热带地区不同林分下植物水分利用的季节差异. 生态环境学报, 29(4): 665-675.

10. Qiu X, Zhang MJ, Wang SJ. 2016. Preliminary research on hydrogen and oxygen stable isotope characteristics of different water bodies in the Qilian Mountains, northwestern Tibetan Plateau. Environmental Earth Sciences, 75(23):1491.

11. Wang J, Fu BJ, Lu N et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.

12. Huang XY, Meyers PA. 2018. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peat deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.palaeo.2018.12.017. 

13. Sun L, Yang L, Chen LD et al. 2018. Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock. Hydrology Research, doi: 10.2166/nh.2018.086. 

14. Zhang YG, YU XX, Chen LH. 2018. Comparison of the partitioning of evapotranspiration –numerical modeling with different isotopic models using various kinetic fractionation coefficients. Plant and Soil, 430: 307-328, https://doi.org/10.1007/s11104-018-3737-z. 

15. Zhao X, Li FD, Ai ZP et al. 2018. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Science of the Total Environment, 121-131.

16. Zhu G, Guo H, Qin, D et al. 2018. Contribution of recycled moisture to precipitation in the monsoon marginal zone: estimate based on stable isotope data. Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.12.014. 

17. Che CW, Zhang MJ, Argiriou AA et al. 2019. The stable isotopic composition of different water bodies at the Soil–Plant–Atmosphere Continuum (SPAC) of the western Loess Plateau, China, Water, doi:10.3390/w11091742.

18. Li EG, Tong YQ, Huang YM et al. 2019. Responses of two desert riparian species to fluctuation groundwater depths in hyperarid areas of Northwest China. Ecohydrology, 1-12. 

19. Liu JC, Shen LC, Wang ZX et al. 2019. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 571: 485-493.

20. Liu Y, Zhang XM, Zhao S et al. 2019. The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests, doi:10.3390/f10020121. 

21. Liu Z, Ma FY, Hu TX et al. 2019. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.

22. Luo ZD, Guan HD, Zhang XP et al. 2019. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods. Journal of Hydrology, 571, 642-650. 

23. Qiu X, Zhang MJ, Wang SJ et al. 2019. The test of the ecohydrological separation hypothesis in a dry zone of the northeastern Tibetan Plateau. Ecohydrology, https://doi.org/10.1002/eco.2077.

24. Qiu X, Zhang MJ, Wang SJ et al. 2019. Water stable isotopes in an Alpine setting of the northeastern Tibetan Plateau. Water, doi:10.3390/w11040770.

25. Wang J, Fu BJ, Lu N et al. 2019. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique. Agriculture, Ecosystems and Environment, 276: 55-63. 

26. Wang J, Lu N, Fu BJ. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666: 685-693. 

27. Wu X, Zheng XJ, Li Y, Xu GQ. 2019. Varying responses of two Haloxylon species to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.

28. Xu YY, Yi Y, Yang X, Dou YB. 2019. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban environment. Water, doi:10.3390/w11112287. 

29. Dai JJ, Zhang XP, Luo ZD et al. 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125199

30. Jiang PP, Wang HM, Meinzer FC et al. 2020. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. New Phytologist, doi: 10.1111/nph.16027. 

31. Liu L, Bai YX, She WW et al. 2020. A nurse shrub species helps associated herbaceous plants by preventing shadeinduced evaporation in a desert ecosystem. Land Degradation and Development, https://doi.org/10.1002/ldr.3831. 

32. Liu Z, Ma FY, Hu TX. 2020. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933. 

33. Pan YX, Wang XP, Ma XZ et al. 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena, https://doi.org/10.1016/j.catena.2020.104499

34. Su PY, Zhang MJ, Qu DY et al. 2020. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China. Water, 12, 2791; doi:10.3390/w12102791. 

35. Wang J, Fu BJ, Wang LX et al. 2020. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2020.108020

36. Xiang W, Evaristo J, Li Z. 2020. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, https://doi.org/10.1016/j.geoderma.2020.114321

37. Xiao X, Zhang F, Li XY et al. 2020. Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone Journal, doi: 10.1002/vzj2.20022.

38. Yang B, Meng XJ, Singh AK et al. 2020. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems and Environment, 298, 106937.

39. Yang B, Zhang WJ, Meng XJ et al. 2020. Effects of a funnel-shaped canopy on rainfall redistribution and plant water acquisition in a banana (Musa spp.) plantation. Soil, Tillage Research, https://doi.org/10.1016/j.still.2020.104686.

40. Yong LL, Zhu GF, Wan QZ et al. 2020. The Soil Water Evaporation Process from Mountains Based on the Stable Isotope Composition in a Headwater Basin and Northwest China. Water, 12, 2711; doi:10.3390/w12102711. 

41. Zhang Y, Zhang MJ, Qu DY et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China. Water, doi:10.3390/w12071923. 

42. Zhang YG, Wang DD, Liu ZQ et al. 2020. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2019.105995

43. Li Y, Ma Y, Song XF et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125811. 

44. Yang B, Meng XJ, Zhu XA et al. 2021. Coffee performs better than amomum as a candidate in the rubber agroforestry system: Insights from water relations. Agricultural Water Management, doi.org/10.1016/j.agwat.2020.106593. 

45. Qiu X, Zhang MJ, Dong ZW et al. 2021. Contribution of Recycled Moisture to Precipitation in Northeastern Tibetan Plateau: A Case Study Based on Bayesian Estimation. Atmosphere, 12, 731. https://doi.org/10.3390/ atmos12060731. 


LI-2100特点

1. 沿用传统经典的真空蒸馏冷冻方法,数据可靠

2. 无需液氮:压缩机制冷,提高安全性

3. 快速高效:一次可同时提取14个样品

4. 全自动抽提:全过程无人值守

5. 安全便捷:自我断电与自我保护功能

6. 质量控制:故障提示与自动报警

7. 全球首创:专利技术

       8. 氢氧稳定同位素前处理

LI-2100全自动真空抽提系统的海外之路


性能指标

提取速度

>110 个/天

可同时提取样品数

14 个

系统真空度

<1000 Pa

系统漏率

<1 Pa/s

抽提率

>98%

回收率

99%-101%

真空泵

5 L/min, 24 V, 最大压力, 0.3bar

制冷

无需液氮,压缩机与冷阱结合,最低制冷温度可达 -95℃

制热

电磁制热,最高制热温度可达 130℃

显示与操作

TFT LCD (12寸, 800*480; 65536). 触摸式人机友好交互界面

自动保护

温度过高或超出设定温度值,加热系统自动关闭

自动报警

制冷系统故障提示并报警与真空泄露故障报警

尺寸

90 cm (H)×74 cm (W)×110 cm (D)

重量

120 Kg

LI-2100是国际上第一款全自动植物土壤真空抽提系统,也是国内全自动植物土壤真空抽提系统的领导品牌。LI-2100为客户取得更为准确的数据提供了有利的方法和保障。理加公司专注国产生态仪器的研发和生产,是国内生态领域自主研发比较早、国产化比较好的一家公司。相信随着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的生态仪器,给更多的国内外客户提供更有价值的产品。

海外市场的拓展不是一条容易走的路,但理加会坚定的走出去。

News / 相关新闻 More
2023 - 05 - 18
2023年5月5-8日,第八届青年地学论坛在湖北武汉顺利召开。本次会议由青年地学论坛理事会和中国科学院青年创新促进会地学分会主办,武汉大学、中国科学院精密测量科学与技术创新研究院以及中国地质大学(武汉)联合承办。论坛共设 21 个主题,234 个专题,内容丰富且涵盖地学领域众多研究方向,吸引了近4000余名科学家与青年学者参加。会议伊始,委副书记沈壮海、中科院精密测量科学与技术创新研究院院长周欣、中国地质大学(武汉)校长王焰新和青年地学论坛理事长晏宏代表组委会分别致欢迎辞。中国科学院开幕式由武汉大学资源与环境科学学院院长沈焕锋教授主院士李德仁、孙和平、王焰新等6名院士专家作大会学术报告。精彩的学术交流,激烈的思想碰撞,呈现了一场酣畅淋漓的学术盛宴。应主办方邀请,北京理加联合科技有限公司(以下简称理加联合)携相关产品参与了本次大会。在会议现场,理加联合设置产品与技术咨询展台,吸引了众多与会人...
2023 - 04 - 28
2023年4月22日至23日,中国环境科学学会2023年科学技术年会在南昌顺利召开,生态环境部副部长赵英民,江西省人民政府副省长陈敏,中国工程院院士、中国环境科学学会理事长王金南等相关领导出席会议。本届年会以“发展绿色低碳,建设美丽中国”为主题,设置了53个分会场、593个学术报告,中国工程院院士贺克斌、吴丰昌、贺泓,中国科学院院士朱彤等6位专家学者在会上作了主旨报告。除了精彩纷呈的报告,本次大会同期举办了生态环境科技成果展,广大生态环境专家学者和科技工作者齐聚一堂,交流学术进展、共商科技创新,为促进生态环境科技创新、成果转化应用和科学技术普及贡献智慧。作为一家具备自主研发实力的生态环境仪器供应商和技术服务商,北京理加联合科技有限公司应邀参加本次大会,并携带环境监测的科研仪器,展现了领域内的科技创新成果,受到了与会专家学者的高度评价。本次会议指出,积极稳妥推进碳达峰碳中和,实现以生态环境高...
2023 - 04 - 28
2023年3月31日至4月2日,第四届氮素生物地球化学循环学术论坛在北京大学成功召开。本次论坛由中国土壤学会氮素工作组、中国地理学会环境地理专业委员会与国际氮行动组织(INI)东亚中心联合举办,北京大学城市与环境学院、环境科学与工程学院、物理学院,地表过程分析与模拟教育部重点实验室联合承办,是我国氮循环领域迄今规模最大、参会人员层次最高、学术水平也最高的学术会议。本次大会报告由北京大学周丰教授和张霖研究员主持,分会场由18位召集人负责。会议期间,围绕“氮循环与可持续发展 ”的主题,和下设的“氮循环关键过程与机制 “、“活性氮释放规律与效应 ”、“氮的可持续管理与政策 ”、“氮循环研究新技术与新方法 ”4个议题,专家学者们从不同的角度出发进行报告分享,青年学者们也踊跃发言,积极交流,现场学术氛围浓厚。应主办方邀请,北京理加联合科技有限公司参加了本次大会,总经理孙宝宇先生在大会作特别报告“激光...
2023 - 04 - 28
2023年4月8日,全国第一届遥感地面观测联盟研讨会顺利举行,大会由西南大学地理科学学院、重庆金佛山喀斯特生态系统国家野外科学观测研究站、高分专项国家真实性检验网北碚站、重庆市南川区金佛山管理委员会、重庆金佛山国家级自然保护区管理事务中心和重庆市药物种植研究共同承办。来自中国科学院空天信息创新研究院、中国科学院西北生态环境资源研究院、国家卫星气象中心、北京大学、北京师范大学、武汉大学等66所高校和科研院所师生代表200余人齐聚本次会议,交流和分享遥感地面观测相关的科技成果和经验。西南大学副校长赵国华和福建师范大学陈镜明院士、中国科学院半导体研究所党委书记冯仁国、中国科学院科技促进发展局杨萍研究员、国家自然科学基金委地球科学部一处综合自然地理学项目主任高阳、武汉大学张良培教授、金佛山国家站站长马明国等出席第一届遥感地面观测联盟成立仪式。会议期间,陈镜明、高阳、中国科学院地理科学与资源研究所地...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开