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Proximal remote sensing is being widely studied as a noninvasive method to partially automate diagnostics of plants

and insects. The hypothesis that proximal remote sensing can be used to differentiate specimens of adult beet leafhop-

pers (Circulifer tenellus) that were nonviruliferous or viruliferous for beet curly top virus (BCTV) was tested. A key

aspect of applications of proximal remote sensing is the ‘robustness’ or repeatability of input reflectance data. Many

factors may contribute to low input reflectance data robustness; these include: (i) issues related to the consistency of

proximal remote sensing conditions (light intensity and spectral composition, ambient temperature), (ii) insect specimen

preparation (projection angle, storage and handling), and (iii) insect specimen characteristics (age, growing conditions,

variety/biotype, host plant). This study demonstrates that nonviruliferous and viruliferous specimens of adult beet

leafhoppers possess unique body reflectance features and, therefore, can be differentiated. However, insect specimen

preparation (removal of wings and placement) markedly affected the classification accuracy. Addition of experimental

noise to input reflectance data was conducted to simulate varying degrees of input reflectance data robustness. The

potential of developing reflectance-based diagnostic tools for detection of plant pathogenic viruses in insects is dis-

cussed, with an emphasis on input data robustness.
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virus detection

Introduction

Proximal remote sensing consists of acquiring and classi-
fying reflectance or transmittance data at one or multiple
wavelengths from target objects placed within a short
distance (<1 m and typically much less) from an imaging
sensor (Nansen, 2016). In addition to several important
reviews on use of reflectance-based technologies in plant
science (Prabhakar et al., 2012), a rapidly growing num-
ber of studies describe the use of proximal remote sens-
ing technologies to detect and diagnose infection of
plants by plant pathogens, including: cercospora leaf spot
(Cercospora beticola), sugar beet rust (Uromyces betae)
and powdery mildew (Erysiphe betae) in sugar beet (Beta
vulgaris; Rumpf et al., 2010); powdery mildew (Blume-
ria graminis f. sp. hordei, isolate K1) in barley (Hordeum
vulgare; Kuska et al., 2015; Thomas et al., 2017); and
fusarium head blight in wheat (Triticum spp.; Bauriegel
& Herppich, 2014). There are also recent reviews

describing the rapidly growing body of research into the
use of proximal remote sensing in entomological studies
(Nansen, 2016; Nansen & Elliott, 2016). For instance,
insect body reflectance data have been used to: age-grade
mosquito species (Anopheles spp.; Sikulu et al., 2014),
biting midges (Culicoides sonorensis; Reeves et al., 2010)
and two species of fruit flies (Drosophila melanogaster
and Drosophila simulans; Aw et al., 2012); determine
whether two species of fruit flies were infected with Wol-
bachia (Aw et al., 2012); differentiate mated and
unmated honey bee queens (Webster et al., 2009); deter-
mine developmental stages of blowfly puparia (Voss
et al., 2016); and characterize levels of ‘terminal stress’
imposed by killing agents on maize weevils (Sitophilus
zeamais) exposed to an insecticidal plant extract, and
larger black flour beetles (Cynaus angustus) exposed to
entomopathogenic nematodes (Nansen et al., 2015a).
These studies highlight that, although groups of plants or
insect specimens may be indistinguishable by the human
eye, internal physiological changes and/or marked alter-
ations of metabolic processes can potentially be detected
via extraction and classification of body reflectance fea-
tures. It is important to emphasize that, although reflec-
tance features are acquired from the surface of objects
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(such as insects, seeds and green leaves), a recent study
has clearly demonstrated how ‘penetration’ (particularly
in the near-infrared portion of the radiometric spectrum)
leads to reflectance data being at least partially influ-
enced by the structure and composition of tissues below
the surface (Nansen, 2018).
Proximal remote sensing proposed as a diagnostic tool

for detection of plant pathogens in insect vectors is based
on two fundamental assumptions. First, acquisition of
plant pathogens by insect vectors causes physiological
changes in insect vectors; that is, the pathogen may only
be present in very specific tissues or organs (such as sali-
vary glands), but it may elicit systemic physiological
changes/responses in the insect vector in response to the
pathogen (Kaur et al., 2017; Hasegawa et al., 2018). Sec-
ondly, pathogen-induced changes to insect physiology can
be detected based on body surface reflectance features,
even after insect specimens have been killed and stored in
70% ethanol. The latter assumption has recently been
investigated, and it was demonstrated that specimen stor-
age in 70% ethanol (compared to 50% or 90%) should be
recommended (Li et al., 2017). This study showed that
storage time up to several weeks in 70% ethanol had negli-
gible effects on reflectance features acquired from insect
specimens. These technical details are very important
because they highlight that insect specimens can poten-
tially be collected at field sites, stored in 70% ethanol, and
shipped before arriving at diagnostic imaging facilities,
although such effects should be evaluated for each insect
species prior to beginning extensive experimentation.
An increasing body of research into deployment of

proximal remote sensing technologies to detect and diag-
nose plant pathogens in both plants and insect vectors
suggests that such reflectance-based technologies may be
used to greatly improve quarantine and inspection efforts
and regional crop disease monitoring programmes. That
is, similar to PCR- and ELISA-based services currently
provided by commercial diagnostic laboratories, it seems
reasonable to expect that reflectance-based technologies
can be developed, so that agricultural stakeholders can
ship insect samples to these laboratories and obtain rapid,
reliable and cost-effective data on infection rates. With
such potential, it is understandable and certainly justifi-
able that many research groups are studying advanced
classifications of proximal remote sensing data as part of
resistance breeding of crop plants and plant disease diag-
nostics (Mahlein, 2015; Wahabzada et al., 2016).
As part of developing reflectance-based diagnostic tools,

the ‘robustness’ or repeatability of input reflectance data
must also be considered (Nansen, 2011). Low robustness
implies a high level of variability in data acquired from the
same object at multiple time points, different portions of
the same object, or several objects in the same category or
class. Many factors contribute to low input reflectance
data robustness (Nansen, 2018) and include issues related
to the consistency of proximal remote sensing conditions
(light intensity and spectral composition, ambient temper-
ature, etc.), insect specimen preparation (projection angle,
storage and handling, etc.), and insect specimen

characteristics (age, sex, growing conditions, variety/bio-
type, host plant etc.). Moreover, low data robustness
implies that both the sensitivity (ability to differentially
detect low levels of disease-induced stress) and the
repeatability (ability to accurately classify a wide range of
datasets) of reflectance-based classification algorithms are
jeopardized. In short, if the robustness of input data is
low, then there is an increased risk of classification errors
(false positive (Type I) and/or false negative (Type II)). As
part of the development and testing of reflectance-based
classification algorithms to be used in studies of insect vec-
tors of plant pathogens, it is therefore important to include
quality control of classification algorithms to obtain better
insight into their performance when applied to input data
with varying degrees of robustness.
Beet curly top virus (BCTV) is a plant-infecting virus

with a circular single-stranded DNA genome, which is
encapsidated in small twinned quasi-isometric virions that
measure 18 9 30 nm. It is a member of the family Gemi-
niviridae and the type species of the genus Curtovirus.
BCTV induces curly top disease in a large number of
crops, including sugar beet, tomato, melon and pepper
(Soto & Gilbertson, 2003; Munyaneza & Upton, 2005).
BCTV is transmitted by beet leafhoppers (Circulifer tenel-
lus), which are sap-sucking insect pests (Nault & Ammar,
1989). The mode of BCTV transmission by the beet
leafhopper is circulative and nonpropagative (Chen & Gil-
bertson, 2016). The virus can be acquired and transmitted
in minutes, but longer periods of feeding result in higher
rates of transmission (Bennett, 1971; Thomas & Boll,
1977). The current standard for detection of BCTV in beet
leafhoppers is a PCR-based method (Soto & Gilbertson,
2003; Chen & Gilbertson, 2008, 2016). Although PCR-
based methods for detection of BCTV are highly accurate,
sensitive and specific, cost and processing time are major
constraints. A noninvasive diagnostic tool to rapidly, accu-
rately and cost-effectively screen large numbers of beet
leafhoppers for the presence of BCTV would be beneficial
as a way to forecast epidemics and to target infected insect
vector populations, both spatially and temporally.
The current study is based on the hypothesis that

proximal remote sensing can be used to acquire and
analyse insect body reflectance features to accurately dif-
ferentiate nonviruliferous and viruliferous specimens of
adult beet leafhoppers. A negative association between
input reflectance data robustness and accuracy of reflec-
tance-based classification of adult beet leafhopper speci-
mens was predicted. Separate analyses of reflectance data
acquired from processed (wings removed and each beet
leafhopper carefully placed on the side) and unprocessed
(wings intact and placed haphazardly) insect specimens
were conducted. As a framework of quality control to
quantify the importance of input reflectance data robust-
ness, average reflectance profiles acquired from beet
leafhopper specimens were experimentally manipulated
by adding stochastic ranges of noise to simulate varying
degrees of input reflectance data robustness. The poten-
tial of developing reflectance-based diagnostic tools for
detection of important plant pathogenic viruses in insects
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as a tool to determine the prevalence of viruliferous vec-
tor insects in a population is discussed, with an emphasis
on input data robustness.

Materials and methods

Beet leafhoppers

Specimens of beet leafhopper were obtained from colonies reared

on uninfected sugar beet plants (nonviruliferous) or on BCTV-

infected sugar beet plants (viruliferous), which had been main-

tained at UC Davis for more than 24 months. Beet leafhopper
colonies were maintained on sugar beet plants inside cages in

separate greenhouses. It was assumed that the level of specimen

processing could potentially affect the ability to differentiate

nonviruliferous and viruliferous specimens based on body reflec-
tance. Consequently, separate analyses of what is referred to as

processed and unprocessed insect specimens were conducted. In

the first dataset, beet leafhoppers were processed by removing
wings and carefully placing each beet leafhopper on its side prior

to proximal remote sensing (Fig. 1a). Removal of wings was

done by gently pressing the wings of each specimen onto a piece

of sticky tape and pulling off the wings. In addition to removal
of wings, all specimens were carefully laid on their side, so that

all specimens were imaged in the same position. The second and

third datasets are referred to as unprocessed because wings were

not removed, and, during acquisition of proximal remote sensing
data, the specimens were placed haphazardly (not in any specific

position; Fig. 1b). The first and second datasets consisted of

specimens sampled on two different dates to include variability

over time into the analysis. The first dataset consisted of 70 adult
beet leafhopper specimens, with 35 specimens each from BCTV-

free and BCTV-infected sugar beet plants (this was done by col-

lecting 15 beet leafhoppers from each colony on 10 April 2017
followed by 20 from each colony on 17 April 2017). The second

dataset consisted of 100 adult beet leafhopper specimens, with

50 specimens each collected from uninfected and BCTV-infected

sugar beet plants (this was done by collecting 25 beet leafhoppers
from each colony on 7 and 15 December 2016). Regarding the

third dataset, acquired proximal remote sensing and PCR detec-

tion was performed on beet leafhoppers collected at five time

points: 0 (baseline, control not exposed to BCTV-infected plants)

and 1, 2, 3 and 4 days after exposure to BCTV-infected sugar
beet plants. Here, c. 200 adult beet leafhoppers from the colony

reared on noninfected sugar beet plants were transferred to

BCTV-infected sugar beet plants, and subsamples of 10 adult

specimens were collected daily after 0–4 days. As a positive con-
trol, 12 adult beet leafhopper specimens taken directly from the

colony reared on BCTV-infected sugar beet plants (viruliferous

beet leafhoppers) were sampled. With data acquired in two time
series for the five time points (0–4 days), and 12 individuals as

positive controls, a total of 112 adult beet leafhopper specimens

were included in this third dataset. Thus in total, this study con-

sisted of analysis of 282 adult beet leafhopper specimens from
three datasets and with each dataset including samples collected

at two separate dates (dataset 1 = 70 specimens, dataset 2 = 100

specimens, and dataset 3 = 112 specimens).

For all three datasets, adult nonviruliferous and viruliferous
specimens were transferred directly to vials containing 70% etha-

nol, which was chosen because it was previously identified as

being superior to other killing methods and ethanol concentrations

when proximal remote sensing is deployed for studies of insects
(Li et al., 2017). Adult beet leafhopper specimens were stored in

70% ethanol for 2–5 days prior to acquisition of proximal remote

sensing data. Thus, the processing of adult beet leafhopper speci-
mens was designed to simulate field sampling and subsequent ship-

ment of specimens for analysis to a diagnostic laboratory.

Extraction of DNA and PCR detection of BCTV in
adult beet leafhoppers

DNA extraction methods described in previously published stud-

ies were used (Soto & Gilbertson, 2003; Chen & Gilbertson,

2008, 2016). Briefly, individual adult beet leafhoppers were

ground in 150 lL STE buffer (100 mM NaCl, 10 mM Tris-HCl
(pH 8.0), 1 mM EDTA) containing RNase A (10 lg mL�1) in a

1.5 mL Eppendorf tube with a minipestle. After the addition of

350 lL STE buffer, the tubes were incubated at 37 °C for

10 min. Then, 2.5 lL of proteinase K (100 lg mL�1) and 25 lL
of 10% sodium dodecyl sulphate (SDS) solution were added to

these suspensions, and tubes were incubated at 37 °C for 1 h.

The suspensions were clarified by centrifugation (5 min at

(b)

(c)

(a)

Processed Unprocessed

Processed

Unprocessed

Alison Stewart

Alison Stewart

Figure 1 Drawings of adult beet leafhoppers

(Circulifer tenellus) when either processed (a;

leafhopper wings were removed and each

leafhopper was placed carefully on its side

prior to proximal remote sensing) or

unprocessed (b; wings were not removed,

and, during acquisition of proximal remote

sensing data, the specimens were placed

haphazardly and not in any specific

position). Representative images of

processed and unprocessed adult beet

leafhoppers are also shown (c).
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12 000 g), and the supernatant was extracted with an equal vol-

ume of phenol:chloroform. Nucleic acids were recovered by
ethanol precipitation, suspended in 20 lL sterile distilled water,

and 2 lL was used in the PCR.

To detect BCTV, the primer pair BGc396 (50-CAACTGGTC

GATACTGCTAG-30) and BSCTVv2688 (50-GAGCTGGTACT
TCGATGTTG-30), designed to detect severe strains of BCTV

(including the BCTV-Svr-CFH isolate used in the present study)

was used to direct the amplification of c. 0.7 kb BCTV DNA
fragments, which includes parts of the overlapping V2/V3 and

C1/C4 genes flanking the entire intergenic region (Chen et al.,
2010). The PCR parameters were as follows: an initial denatur-

ing step at 94 °C for 5 min; followed by 30 cycles of 94 °C for
30 s (denaturing), 61 °C for 40 s (annealing), and 72 °C for

1 min (extension); with a final extension step of 72 °C for

7 min. PCR-amplified DNA fragments were analysed by

electrophoresis in 1% agarose gels in 19 TAE buffer (40 mM

Tris-acetate, 1 mM EDTA), stained with ethidium bromide and

visualized with UV light.

Proximal remote sensing data acquisition

Proximal remote sensing data were acquired from individual

adult beet leafhopper specimens under environmental conditions
similar to those described in previous studies (Nansen et al.,
2014; Voss et al., 2016; Nansen, 2018). Adult specimens were of

unknown age, sex and mating status, as intended to simulate the

variation encountered during field sampling of adult beet leafhop-
pers. A push-broom hyperspectral camera (PIKA XC; Resonon

Inc.) mounted 20 cm above the specimens was used, and hyper-

spectral images were acquired with the spatial resolution of about

50 pixels mm�2 under artificial lighting (four 15 W 12 V light
bulbs with two on either side of the lens). The main specifications

of the hyperspectral camera were FireWire IEEE 1394b interface,

14 bit digital output, and 7° angular field of view. The objective
lens had a 17 mm focal length (maximum aperture of f1.4), opti-

mized for the near-infrared and visible near-infrared spectra.

Reflectance data were acquired in 240 spectral bands from 383

to 1036 nm (spectral resolution = 2.1 nm), but only 210 spectral
bands from 435 to 1008 nm were included. Spectral data in both

ends of the acquired spectrum were omitted due to concerns

about low signal-to-noise ratio. With the number of spectral

bands exceeding the number of samples (dataset 1 = 70 speci-
mens, dataset 2 = 100 specimens, and dataset 3 = 112 speci-

mens), a major concern is model over-fitting caused by the

Hughes phenomenon or violation of the principle of parsimony
(Defernez & Kemsley, 1997; Hawkins, 2004). Consequently,

spectral binning was conducted, so that the original 210 spectral

bands were averaged and converted into 70 spectral bands (spec-

tral resolution = 6.3 nm).

Data analysis

During acquisition of proximal remote sensing data, the relative
humidity was 30–40% and the ambient temperature 19–22 °C.
A piece of white teflon (K-Mac Plastics) was used for white cali-

bration, and the light saturation level was adjusted to the white

teflon. Background colour has been shown to affect reflectance
data acquired from insect specimens, such as adult mosquitoes

(Nansen, 2018). In this study, adult beet leafhoppers were

placed on top of white paper to maximize the difference in
reflectance between insects and background in all spectral bands

across the examined spectral range. Data processing and analy-

ses were conducted in PC-SAS v. 9.4 (SAS Institute). Similar to

previously published studies (Nansen et al., 2014; Voss et al.,
2016; Nansen, 2018), a dichotomous radiometric filter was
developed to automate exclusion of white background. After

exclusion of white background, the average number of pixels

per specimen was 510 � 16 SE. A single average reflectance

profile was generated for each beet leafhopper specimen.
A key objective of this study was to assess the effect of input

reflectance data robustness, and this was addressed through

experimental addition of stochastic noise, i.e. the average reflec-
tance value in each spectral band was experimentally manipu-

lated. The following briefly describes how stochastic noise was

added. It was assumed that the reflectance value in a single spec-

tral band acquired from one adult beet leafhopper is 0.150000.
If the stochastic noise range is 0–0.5%, then a random value

ranging from �0.5% to 0.5% is added/subtracted. Thus, experi-

mental manipulation of the actual reflectance value, 0.150000,

by adding/subtracting 0–0.5% noise would generate a new
reflectance value of 0.14925–0.150075. The experimental addi-

tion of stochastic noise to reflectance values was performed so

that the manipulation in one spectral band was independent of

the noise added to the reflectance value in other spectral bands.
In addition, the manipulation of reflectance values was indepen-

dent across average reflectance profiles. Multiple ranges of

stochastic noise were examined for each dataset.
Classification of nonviruliferous and viruliferous specimens of

adult beet leafhoppers was based on linear discriminant analysis

(Fisher, 1936), which has been used in similar classification

studies of average reflectance profiles acquired from insects and
seeds (Nansen et al., 2015a,b; Li et al., 2017). Initially, stepwise

linear discriminant analysis was used to select only the spectral

bands (out of the 70 spectral bands) with significant contribu-

tion to the linear discriminant classification model. The selected
subset of explanatory variables was used to generate linear dis-

criminant classification models.

There are numerous approaches for validation of reflectance-
based classifications of objects, such as insects, and the three

most commonly used are: (i) jack-knife cross-validation (leave

one out and using it for validation and repeating this for all

observations), in which a single observation is removed from
the training dataset and is used for validation. This method is

then repeated with all observations to calculate an average clas-

sification accuracy. (ii) The entire dataset is divided into several

groups, for instance four, then data in three of these groups are
used as training data to generate the classification model, and

the remaining fourth is used for validation. In both of these

methods, all proximal remote sensing data are essentially col-
lected under the same conditions, so possible noise from incon-

sistency in proximal imaging conditions is completely ignored.

(iii) A third validation method consists of collecting training

data on some days and then an independent validation dataset
is collected on other days. The latter validation method does

allow possible noise caused by inconsistency in proximal imag-

ing conditions that may affect the classification accuracy, but

factors associated with specimen conditions are kept constant,
because the validation data are typically collected from a repli-

cation of the experiment conducted to generate the training

dataset.

In this study, jack-knife cross-validation was used to quantify
the accuracy of the linear discriminant classification model of

processed specimens. To quantify the accuracy of the linear dis-

criminant classification model derived from unprocessed insect
specimens, the linear discriminant classification model was

developed using the second dataset, and the third dataset was

used for independent validation.
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Results

Processed insect specimens

To investigate possible effects of insect specimen prepa-
ration, a high level of specimen processing was included,
which consisted of removing wings to expose the insect
abdomen and also placing each specimen carefully on its
side prior to proximal remote sensing (Fig. 1a,c). Such a
level of processing would probably be unfeasible to per-
form if this technology were to be implemented as a
commercial and large-scale operation with high through-
put. However, the dataset was included as an important
comparison. Average reflectance profiles showed that vir-
uliferous adult beet leafhoppers had consistently higher
reflectance compared with nonviruliferous conspecifics in

spectral bands from about 600–1004 nm (Fig. 2a). Fig-
ure 2b shows the variance as a percentage of average
reflectance values, and it is seen that variance in all spec-
tral bands was relatively low (<0.14% of average reflec-
tance values). Figure 2b also shows that proximal remote
sensing data acquired from viruliferous adult beet
leafhoppers had slightly higher variance compared to
nonviruliferous conspecifics. Due to considerable differ-
ences of average reflectance values and low within-class
variance, a combination of only four spectral bands
(indicated by circles in Fig. 2a) was selected in the step-
wise discriminant analysis, and the classification accuracy
of the linear discriminant model was very high, 97%. To
examine the robustness of the linear discriminant model,
0–8% noise was added to the data. This analysis
revealed that when more than 1% stochastic noise was
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Figure 2 Average reflectance profiles of processed adult beet leafhoppers raised on noninfected sugar beet (control) and on sugar beet infected

with beet curly top virus (BCTV) in 70 spectral bands from 435 to 1008 nm (a), and variance as a percentage of average reflectance values (b).

Stochastic noise was added to average reflectance profiles as a way to experimentally reduce input reflectance data robustness. Reflectance data

were analysed based on linear discriminant analysis, and the relationship between range of stochastic noise and classification accuracy was

examined (c). The dotted horizontal line represents classification accuracy of 80%. Open circles in (a) represent spectral bands selected for the

linear discriminant function based on stepwise forward selection.
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added, the classification accuracy decreased below 80%
(Fig. 2c).

Unprocessed insect specimens

Individual adult beet leafhoppers were subjected to prox-
imal remote sensing without taking into consideration
their position when placed under the hyperspectral cam-
era and without any processing (i.e. removal of wings
and without careful placement of insect individuals)
(Fig. 1b,c). For commercial application of proximal
remote sensing-based diagnosis of adult beet leafhoppers,
this would be the most feasible procedure. As seen in
Figure 3a, there was little visual separation between
average reflectance profiles of nonviruliferous and virulif-
erous adult beet leafhoppers. However, the trend was
similar to that observed with processed adult beet

leafhoppers: that viruliferous specimens had higher
reflectance than nonviruliferous conspecifics. Figure 3b
shows that the variance as percentage of average reflec-
tance in individual spectral bands was again highest in
viruliferous adult beet leafhoppers. Moreover, the overall
variance was similar to that of processed adult beet
leafhoppers, although the location of the highest level of
variance was different (c. 600–900 nm). Due to higher
similarity between average reflectance profiles of nonvir-
uliferous and viruliferous adult beet leafhoppers and
slightly higher variance, the ability to accurately classify
unprocessed adult beet leafhoppers was slightly lower
(91%) compared to processed beet leafhoppers (97%).
The 24 spectral bands included in the linear discriminant
model of unprocessed specimens are represented as cir-
cles in Figure 3a, and it is seen that these spectral bands
were not restricted to a specific spectral region. In other
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Figure 3 Average reflectance profiles of unprocessed adult beet leafhoppers raised on noninfected sugar beet (control) and on sugar beet infected

with beet curly top virus (BCTV) in 70 spectral bands from 435 to 1008 nm (a), and variance as a percentage of average reflectance values (b).

Stochastic noise was added to average reflectance profiles as a way to experimentally reduce input reflectance data robustness. Reflectance data

were analysed based on linear discriminant analysis, and the relationship between range of stochastic noise and classification accuracy was

examined (c). The dotted horizontal line represents classification accuracy of 80%, and it was considered the threshold for acceptable classification

accuracy. Open circles in (a) represent spectral bands selected for the linear discriminant function based on stepwise forward selection.
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words, accurate classification of nonviruliferous and vir-
uliferous adult beet leafhoppers was possible based on
spectral data from individual bands within the entire
spectral range. To test the robustness of the linear dis-
criminant model, 0–1% noise was added to the data;
when more than 0.1% stochastic noise was added, the
classification accuracy decreased below 80% (Fig. 3c).

BCTV expression over time in unprocessed insect
specimens

An important aspect of diagnostic tools is to determine
how long insect vectors need to feed on an infected plant
before acquiring a detectable amount of the pathogen.
Thus, a third dataset was evaluated in which nonvirulif-
erous adult beet leafhoppers were transferred to a
BCTV-infected sugar beet plant and beet leafhoppers
sampled daily after 0–4 days of feeding. As a positive
control, 12 adult beet leafhoppers were also sampled
from the colony reared on BCTV-infected sugar beet
plants. PCR data confirmed that all 12 of these adult
beet leafhoppers were positive for BCTV, i.e. virulifer-
ous. Beet leafhoppers from the 0 day time point, i.e. col-
lected from the colony reared on uninfected sugar beet
plants, were all negative for BCTV based on the PCR
test (Fig. 4). The PCR data also showed a gradual
increase in the percentage of beet leafhoppers positive
for BCTV, exceeding 98% after 3 days (Fig. 4). The
classification of the exact same adult beet leafhoppers for
the presence of BCTV based on proximal remote sensing
data showed: (i) about 25% false positive error for the
day 0 beet leafhoppers, (ii) a gradual increase in percent-
age of beet leafhoppers positive for BCTV following 1–
3 days of feeding on BCTV-infected plants, and (iii) a
substantial reduction (c. 40%) in predicted BCTV-posi-
tive beet leafhoppers following 4 days of feeding on
BCTV-infected sugar beet plants. To the authors’ knowl-
edge, the results presented in Figure 4 represent the first
report of truly independent validation of a reflectance-
based classification of insect vectors to determine their
status as either nonviruliferous or viruliferous for a plant
virus. That is, one dataset was used as training data to
develop the classification model and another dataset was
used for validation. Importantly, the training dataset was
derived from data acquired from two colonies of adult
beet leafhoppers reared on noninfected or BCTV-infected
plants, but the age and sex of the collected beet leafhop-
pers were unknown. Despite important discrepancies
between PCR-based and reflectance-based diagnoses, the
results presented in Figure 4 are very encouraging as a
proof-of-concept. To obtain a higher level of classifica-
tion accuracy of the reflectance-based diagnosis, a larger
dataset is needed. In addition, effects of host plant
should be investigated with reflectance-based methods, as
host plants may affect beet leafhopper health and longev-
ity (Thomas & Boll, 1977). There are also indications of
geographical origin (affecting life traits of both insects
and host plants) and host plants may affect the consis-
tency of proximal remote sensing data (Li et al., 2017).

Discussion

The results presented in this study hinge upon the assump-
tion that acquisition of plant pathogens by insect vectors
cause physiological changes in insect vectors. Physiological
and/or molecular data were not collected to confirm a
BCTV-induced response, but this was recently demon-
strated for other virus–vector systems. For example, signif-
icant and temporally regulated differences in gene
expression have been shown between whiteflies (Bemisia
tabaci) that fed on tomato plants infected with either
tomato chlorosis virus (genus Crinivirus, family Clos-
teroviridae) (Kaur et al., 2017) or tomato yellow leaf curl
virus (genus Begomovirus, family Geminiviridae) (Hase-
gawa et al., 2018) and those that fed on virus-free host
plants. The latter study is particularly relevant as BCTV is
also a member of the Geminiviridae and has a similar
mode of virus translocation through the insect vector. In a
study on tomato spotted wilt virus (TSWV) (genus Ortho-
tospovirus, family Tospoviridae), which replicates in its
thrips vector, Zhang et al. (2013) compared the differ-
ences in gene expression between western flower thrips
(Frankliniella occidentalis) reared on healthy tomato
plants and viruliferous thrips reared on tomato plants
infected with TSWV. Interestingly, the authors found that
TSWV infection caused decreased protein synthesis and
amino acid and carbohydrate metabolism in the infected
insects, and that genes often associated with inhibition of
virus replication were up-regulated in F. occidentalis upon
infection (Zhang et al., 2013). It has also been demon-
strated, based on time series data, that insect body reflec-
tance increased significantly in response to killing agents
(entomopathogenic nematodes and an insecticidal plant
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extract) at the time the killing agent is believed to induce
terminal stress (Nansen et al., 2015a). However, in all
studies involving insect body reflectance data, direct causal
relationships between physiological and/or molecular
responses and insect body reflectance may be difficult to
establish, due to probable complex and cascading effects.
The results presented in this study suggest, as a proof-

of-concept, that proximal remote sensing technologies
can be developed to diagnose whether insect vectors
carry important plant pathogens. However, successful
large-scale commercial applications of this technology
will depend on the ability to maximize input reflectance
data robustness. Low and inconsistent reflectance data
robustness (Nansen, 2011) has been highlighted in sev-
eral articles as a major challenge adversely affecting
accuracies of reflectance-based classifications of different
objects, including plants and insect specimens (Nansen
et al., 2008; Nansen & Elliott, 2016). However, to the
authors’ knowledge, this is one of the first studies in
which reflectance data robustness has been examined
experimentally. Due to potentially lower sample costs
and shorter handling time than current diagnostic meth-
ods, it may also be possible for region-wide pest manage-
ment organizations to develop comprehensive databases
with high spatial and temporal resolutions, so that the
spatiotemporal epidemiology of emerging disease out-
breaks can be characterized and ultimately prevented.
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