北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 010-51292601
企业邮箱
新闻资讯 News
News 新闻详情

Li-2100全自动真空冷凝抽提系统应用

日期: 2019-12-13
浏览次数: 110

传统上通过挖掘根系来确定植被的空间分布,在一些生态系统如热带森林中该种方法是具有破坏性的、耗时性的以及不切实际性的(Meinzer et al. 2001),而且仅在土壤剖面给定深度存在根系并不一定是确定其对总吸收量相对贡献的可靠指标,因为并不是所有的根系都具有吸收水分和养分的功能(Ehleringer and Dawson 1992)。因此,传统的方法是不可取的。随着同位素技术的不断发展,氢氧稳定同位素已成为确定植物水分利用模式的有用工具(Ehleringer and Dawson 1992; Brunel et al. 1995)。植物的水分来源主要为降水、土壤水、地表径流水以及地下水(Duan et al. 2008)。降雨是地球上一切水资源的根本来源,在其降落和循环过程中,会产生蒸发、凝聚、渗透等一系列物理化学过程的变化,这就导致不同水源具有不同的δD和δ18O。而植物在吸收土壤水分过程中,水分从根系到木质部的运输过程中不会发生同位素的分馏(White et al. 1985; Dawson and Ehleringer 1991; Dawson and Ehleringer 1993; Walker and Richardson 1991)(注;抗旱和耐盐性木本植物根系吸水过程中可能会发生氢同位素分馏),这是利用氢氧稳定同位素技术确定植物水分来源及贡献率的理论基础。因此可以利用茎木质部δD和δ18O的测量值来反映植物所吸收水分的同位素信息(Ehleringer et al. 1991)。

1 应用案例

已有很多学者基于LI-2100全自动真空冷凝抽提系统和LGR液态水同位素分析仪开展了许多相关研究。周盼盼等(2016)在兰州城区分析了常绿植物侧柏(Platycladus orientalis)、大叶黄杨(Buxus megistophylla)以及落叶植物国槐(Sophora japonica)、连翘(Forsythia suspensa)叶片和木质部水稳定氢氧同位素的时间和空间变化,并探讨了其对周围环境(气温、风速、相对湿度以及气压)变化的敏感程度,为城市绿化植物水分利用策略的认识以及植被建设提供理论依据。Qiu等(2016)分析研究了青藏高原西北部祁连山各种水体(河水、地下水、土壤水以及植物水)的δD和δ18O,旨在了解其同位素的空间分布以及相关的水文过程。Wang等(2017)基于氢氧稳定同位素并结合MixSIAR模型研究了黄土高原半干旱区代表植物本氏针茅(Stipa bungeana),细裂叶莲蒿(Artemisia gmelinii)以及黄荆(Vitex negundo)水分利用模式的季节性变化,结果发现黄荆具有更大程度的生态可塑性,源于干旱胁迫增加时可从深层土壤中汲取水分。Li(2019)研究了黑河流域荒漠河岸生态系统中两个主要的建群种胡杨林(Populus euphratica)和多枝柽柳(Tamarix ramosissima)的水分利用格局以及对地下水深度波动的生理生态响应。为确定黑河流域下游荒漠河岸地区最佳生态需水量提供了量化依据。Wang等(2019)以半干旱黄土高原黄荆、白刺花(Sophora viciifolia)(灌木)以及细裂叶莲蒿(半灌木)三种植物的田间数据为研究对象,比较了两类常用的植物水分吸收方法—线性混合模型(IsoSource)和Bayesian模型(SIAR, MixSIR 和MixSIAR)的差异。结果发现仅用δD或δ18O来预测植物水分吸收无明显差异,就木本植物而言,SIAR和Mix-SIAR模型植物水分分配结果更好。Wang等(2019)基于氢氧稳定同位素并结合MixSIAR模型研究了黄土高原土庄绣线菊(Spiraea pubescens)(原生灌木)和沙棘(Hippophae rhamnoides)(外来灌木种)水分利用特征的季节性变化,结果发现沙棘在水分利用上生态可塑性更强,这为半干旱生态系统植被恢复策略提供了有用信息。总而言之LI-2100效率和抽提率更高,安全性更好,是氢氧稳定同位素测定前处理的有利工具。

2 产品资料

在测量植物和土壤中水的同位素组成时,需将其水分无分馏的提取出来。LI-2100(如图1所示)是LICA自主研发的一款全自动真空冷凝抽提系统,且已通过CE认证(如图2)它依据超低压真空蒸馏冷冻原理,采用自动化技术,将样品中的水分在超低压的环境中加热蒸馏,在低温环境中冷凝收集,从根本上解决了植物和土壤水分提取采集的难题,克服了传统液氮冷却的繁琐,不仅可以防止同位素分馏,而且安全且效率高,不会对植物和土壤造成破坏。可与水同位素分析仪配套使用。


Li-2100全自动真空冷凝抽提系统应用

2.1 产品性能指标

提取速度:>110个/天    可同时提取样品数:14个系统真空度:<1000 Pa

系统漏率:<1 Pa/s       抽提率:>98%           回收率:99%-101%     

真空泵:5L/min,24V,最大压力,0.3bar

制冷:无需液氮,压缩机与冷阱结合,最低制冷温度可达-95%

制热:电磁制热,最高制热温度可达130℃

显示与操作:TFT LCD(7寸,800*480,65536色),触摸式人机友好交互界面

自动保护:温度过高或超出设定温度值,加热系统自动关闭

自动报警:制冷系统故障提示并报警与真空泄露故障报警

尺寸与重量:90 cm(H)×74 cm(W)×110 cm(D),120 Kg

2.2 安装案例

Li-2100全自动真空冷凝抽提系统应用

3 参考文献

周盼盼, 张明军, 王圣杰等. 2016. 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35(11): 2942-2951.

Brunel JP, Walker GR, KennettSmith AK. 1995. Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. Journal of Hydrology, 167: 351-368.

Dawson TE, Ehleringer JR. 1991. Streamside trees that do not use stream water. Nature, 350: 335–337.

Dawson TE, Ehleringer JR. 1993. Isotopic enrichment of water in the ‘woody’ tissues: Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochimica et Cosmochimica Acta, 57(14): 3487–3492.

Duan DY, Ouyang H, Song MH, Hu QW. 2008. Water sources of dominant species in three Alpine ecosystems on the Tibetan Plateau, China. Journal of Integrative Plant Biology, 50(3): 257-264.

Ehleringer JR, Dawson TE. 1992. Water uptake by plants: perspectives from stable isotope composition. Plant Cell and Environment, 15: 1073-1082.

Ehleringer JR, Phillps SL, Schuster WSF, Sandquist DR. 1991. Differential utilization of summer rains by desert plants. Oecologia, 88(3): 430-434.

Li EG, Tong YQ, Huang YM et al. 2019. Responses of two desert riparian species to fluctuatin groundwater depths in hyperarid areas of Northwest China. Ecohydrology, 1-12.

Meinzer FC, Clearwater MJ, Goldstein G. 2001. Water transport in trees: current perspectives, new insights and some controversies. Environmental and Experimental Botany, 45(3): 239-262.

Qiu X, Zhang MJ, Wang SJ. 2016. Preliminary research on hydrogen and oxygen stable isotope characteristics of different water bodies in the Qilian Mountains, northwestern Tibetan Plateau. Environmental Earch Sciences, 75(23):1491.

Walker CD, Richardson SB. 1991. The use of stable isotopes of water in characterizing the source of water in vegetation. Chemical Geology: Isotope Geoscience section, 94: 145–158.

Wang J, Lu N, Fu BJ. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666: 685-693.

Wang J, Fu BJ, Lu N et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.

Wang J, Fu BJ, Lu N et al. 2019. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique. Agriculture, Ecosystems and Environment, 276: 55-63.

White JW, Cook ER, Lawrence JR. 1985. The D/H ratios of sap in trees: implications for water sources and tree ring D/H ratios. Geochimica et Cosmochimica Acta, 49(1): 237-246.


News / 相关新闻 More
2021 - 07 - 30
会议时间:2021年8月3日(星期二) 参会方式:网络线上直播 承办单位主办方:中国科学院东北地理与农业生态研究所协办方:北京理加联合科技有限公司英国ASD公司美国Resonon公司加拿大Itres公司 01会议简介近年来,高光谱遥感已发展成为一个重要的前沿技术,进一步提高了人们通过遥感观测技术认识事物的能力,由于高光谱遥感影像提供了更为丰富的地球表面信息,在农作物监测、森林研究、地质和矿物分析、水色遥感、海洋学研究、大气研究等各个领域得到广泛应用。为加强广大科研工作者对高光谱遥感技术及研究进展的了解,促进不同学科领域学者间的交流,拓宽高光谱遥感技术在不同研究领域的应用和发展。北京理加联合科技有限公司于2021年8月3日以网络会议的形式召开“2021年高光谱测量技术及应用学术交流会”。 02 会议目的 面向广大科研人员,开展以高光谱遥感基础...
2021 - 07 - 09
全球不断升温,已对地球生态系统、人类生存环境和社会经济可持续发展构成严重威胁。海洋作为全球碳循环中重要的组成部分,是大气CO2的主要汇。海洋在吸收大气CO2和调节气候变化方面起着重要作用,同时本身又受到大气CO2浓度不断增加的影响。长期连续观测海洋上空大气中CO2浓度的变化对量化海洋吸收的CO2能力,理解海洋碳循环和整个地球系统相互作用和反馈的关键,而且对预测未来大气CO2 的浓度乃至全球气候变化都有着重要意义。长期、定点、准确地观测限排温室气体本底变化,研究其源、汇和输送规律及其影响,是当今全球变化研究、社会发展和环境外交政策所关注的焦点问题。海表大气温室气体浓度的连续观测结果,可以为中国应对气候变化提供基础的数据支持,为中国在国际气候变化谈判中处于有利位置提供保障。国家海洋环境预报中心“国家海洋局海洋灾害预报技术研究重点实验室”(碳化学实验室)是国内最早系统开展海洋碳循环监测...
2021 - 05 - 31
应用近红外高光谱成像技术监测森林火灾——布里杰山麓(美国蒙大拿州博兹曼市附近)森林火灾的近红外高光谱成像数据2020年9月4-5日,美国蒙大拿州博兹曼市附近布里杰山麓森林发生了一场山火,过火面积超过11,000英亩。所幸的是,无严重人员伤亡,但是烧毁了28座房屋。 大火最初开始发生时,在坐落于布里杰山西侧的Resonon办公室里就能观测到,Resonon工作人员使用高光谱成像仪(型号:Resonon PIKA NIR-C-320)采集了此次山火的高光谱成像数据。(此次数据可以在Resonon的官网下载:https://downloads.resonon.com/)图1:山火的早期阶段拍摄地点:文章作者家中(距着火点大约8.5 km)拍摄时间:9月4日下午4点(大概时间)图2:应用Resonon高光谱成像仪拍摄的山火拍摄地点:Resonon办公室(距离着火点大约5...
2021 - 05 - 28
氢(δD)、氧(δ18O)稳定同位素是广泛存在于自然水体中的环境同位素。在测量氢氧稳定同位素之前,样品采集和预处理是主要的任务, 样品运输应当保证样品性质稳定,避免污染和同位素分馏。如您不清楚样品采集和预处理的具体方法、不确定样品储存的适宜条件和运输注意事项,请看本文介绍。水样品:1野外采集样品取样后(取样量根据老师研究需要自行决定)立即在瓶口处用封口膜密封并且低温保存(如样品暂时不测情况下,可以冰冻储存(如需冰冻储藏则建议用塑料瓶盛装样品,玻璃瓶会被冻裂),以防止蒸发。  2送样前分装用1ml的一次性注射器来取水样品(取一次即可),经过一次性0.45μm滤器(滤器分水系和有机系,根据样品不同来选择)过滤至2ml样品瓶里,盖好瓶盖并用封口膜密封,样品用阿拉伯数字编号,(不是数字编号的话需要您提供电子版样品清单)。 3低温储存OR运输密封好的样品可放置在冰箱冷藏...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(研发、售后)
          光华创业园科研楼二层东侧(销售、市场)
电话:010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

深圳办事处:

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

武汉办事处:

地址:武汉市洪山区民族大道124号龙安港汇城A座1108 手机:13911500497,13910499761


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开