北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

土壤呼吸 | 增雪削弱了植物和微生物氮利用的季节耦合关系并导致生态系统氮流失

日期: 2022-08-01
浏览次数: 4

土壤呼吸 | 增雪削弱了植物和微生物氮利用的季节耦合关系并导致生态系统氮流失

植物和微生物生长繁殖均需要氮。尽管这通常导致两者对氮的竞争,但在数百万年的共同进化中,植物和微生物已发展成了互利共生的相互关系。微生物固定和植物吸收之间的时间耦合在氮循环维持中起着关键作用。植物和微生物生物量的不同季节动态很大程度上决定了不同生态系统组分间的氮流动。值得注意的是,冬季微生物氮固定可能直接影响生长季植物氮供应。气候变化极大地改变了全球降雪格局,进而改变土壤温度、土壤水分和冻融频率,这不仅会影响覆雪期氮循环,还会影响冻融期氮流失。最终,在冬季气候变化下,植物和微生物之间氮交换的时间耦合可能会重塑。然而,目前尚不清楚积雪深度的变化是否会影响植物和微生物氮利用之间的时间联系以及如何影响。

在过去的40年,北极涛动和大气环流的变化增加了中国东北地区冬季积雪深度。为了探索冬季气候变化下植物和微生物氮循环之间季节内和季节间相互作用如何影响生态系统氮固持,中科院植物所刘玲莉研究团队在中国科学院内蒙古草原生态系统定位研究站(IMGERS,43°38′N,116°42′E;1200 m a.s.l.)依托长期降雪控制实验平台,结合15N示踪试验以及N2O高通量监测手段,旨在检验以下假设:1)微生物在冬季有较强的氮获取能力,而植物则在生长季表现出更高的氮竞争能力;2)生长季植物氮吸收与非生长季土壤微生物氮固定量呈正相关,以及3)冻融阶段增雪通过增加气态氮排放和淋溶流失来降低生态系统氮固持量。

作者于2018年1月23日和2019年1月28日测量了每个地块的冬季积雪深度。每小时记录了每个地块10 cm深度的土壤温度。于2017年11月1日至2019年1月28日,每隔30 min测量10 cm土壤深度的土壤含水量。15N标记实验之前,采集土壤(0-20 cm)、根系、凋落物和地上植物,并测量其15N自然丰度。15N标记实验之后,于2018年1月、3月、5月、8月和2019年1月进行五次采样。在非生长季节,采集所有凋落物。在生长季节,采集地上植物生物量、凋落物和土壤样品。并分析每个新鲜土壤样品的微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物15N/14N比率。利用SF-3000-8多通道土壤温室气体通量自动测量系统(北京理加联合科技有限公司)+SC-22自动测量室(北京理加联合科技有限公司)于2018年4月16日至2019年12月31日测量N2O排放。

土壤呼吸 | 增雪削弱了植物和微生物氮利用的季节耦合关系并导致生态系统氮流失

图1 季节性覆雪生态系统中植物、微生物和 溶解无机氮(DIN)库的年度氮动态示意图

【结果】

微生物15N回收率在冬季达到峰值,占生态系统15N总回收率的22%,然后在冻融期迅速下降。增雪加剧冻融期N2O排放以及氮淋溶损失,使生态系统15N总回收率减少了42%。随着生长季节推进,微生物生物量释放的15N被植物吸收,植物表现出更高的氮竞争优势。植物15N回收率在8月达到峰值,占生态系统15N总回收率的17%。格兰杰因果关系检验表明,环境雪处理下微生物15N回收率可以预测植物15N回收率的时间动态,增雪处理下则不能。此外,8月份植物15N回收率与3月份微生物15N的回收率呈正相关,并最好地解释了这一点。3月增雪,较低的微生物15N回收率使8月植物15N回收率降低了73%。总之,该研究结果提供了植物和微生物间氮获取能力季节性差异的直接证据,这有利于生态系统氮固持,然而,增雪削弱了植物-微生物间氮循环的季节耦合关系。

土壤呼吸 | 增雪削弱了植物和微生物氮利用的季节耦合关系并导致生态系统氮流失

图2 2018.11.1至2019.1.31环境和增雪处理下的日平均N2O-N排放量(a)和累积N2O-N排放量(b)

【结论】

增雪加剧非生长季(覆雪期和冻融期)N2O排放以及氮淋溶损失,降低微生物氮固持,从而减少生长季植物的氮供应,加剧植物和微生物间的氮竞争,导致生长季植物氮获取能力下降。进一步分析发现,冻融阶段微生物氮固量是生长季中期植被氮获取能力的主要调控因素,冻融阶段微生物氮固定量越高,生长季植物氮获取量越高。研究表明,在季节性覆雪生态系统中,生长季植物的氮供应依赖于冬季微生物的氮固持量,而冬季增雪加剧了冻融阶段氮流失,从而削弱了植物-微生物间氮循环的季节耦合关系。这些发现表明,降雪模式的变化可能会显著改变未来气候变化下生态系统氮循环和氮基温室气体排放。作者强调了在评估全球变化下的氮循环时,生物地球化学模型更好反映冬季过程及其对冬季气候变化响应的重要性。

点击下方链接,阅读全文:

https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650313105&idx=3&sn=c65ffd94f8ea171c784aca9a3a4292b3&chksm=bee1bd6e89963478a7b6a28ceda0f7e331a9af9360b56707440f7263121348fdc4c349f81f81&token=2031202150&lang=zh_CN#rd


News / 相关新闻 More
2022 - 09 - 23
作为气候变化的主要驱动力,CO2是最重要的长寿命温室气体,约贡献了66%的辐射强迫。自1956年以来,在美国夏威夷的莫纳洛亚山进行了大气CO2浓度首次长期观测,在全球大气监视网(GAW)计划下,迄今为止测量已扩展到约400个站。这些站点主要位于相对偏远地区,从区域到全球尺度上捕获CO2信号,以理解碳循环及其对气候变化的影响。然而,城市化和工业化区人为排放量占全球CO2排放量的70%以上。为扩大温室气体观测网,准确估算CO2通量,在GAW计划框架下,中国建立了8个国家温室气体监测站,并同时安装了大量城市站点,服务于碳中和战略和国内省际碳交易市场。长江三角洲地区是中国经济最发达、城市化最密集的地区,人为CO2排放受到高度的关注。基于此,在本文中,来自浙江工业大学环境学院的一组研究团队以长江三角洲典型城市杭州为研究对象,于2016.3.27-2020.12.31年对其大气CO2摩尔分数(Pica...
2022 - 09 - 09
土壤水(SW)是调节地表过程和地表能量分配的重要状态变量。由于与周围环境复杂的相互作用,SW存在显著的时空变化。近年来,随着测量技术的发展,SW稳定同位素组成(SWSIC;δD和δ18O)已越来越多地用于追踪土壤-植物-大气连续体中的SW运移,以更好地理解诸如量化SW停留时间、识别植物吸收水源和区分蒸腾和蒸发等相关过程。然而,由于受多种环境因素和过程的影响,如具有不同同位素组成的降水输入、土壤蒸发、土壤基质势梯度或矿物质-水相互作用造成的同位素分馏,SWSIC可能会随着时间和空间而显著变化,从而导致了在解释不同研究中SWSIC数据时存在很大的不确定性。因此,通过解释其时空变化格局及与其他因素(如土壤质地、土壤深度和植被)的相关性来改善SWSIC示踪技术至关重要。基于此,为更好地理解SWSIC的时空格局,在本研究中,来自天津大学的研究团队在中国科学院栾城农业生态系统试验站(LAEES)进行了...
2022 - 08 - 29
地下水是水文循环的重要组成部分,广泛用于饮用水、工农业活动以及战略储备。然而,人类活动的加剧(如水利工程建设、地下水过度开采、农药和生活污水排放)以及天然劣质地下水在大型流域中的广泛分布,导致地下水环境恶化。因此,水资源的合理管理和水环境的有效保护至关重要,基于地下水流系统(GFS)理论,全面理解地下水流模式(即更新速率、流径及演化趋势)有助于准确评估水文通量和预测污染物分布。汉江平原是长江流经三峡后第一个接收沉积物的大型河湖盆地。复杂的沉积环境、地下水-地表水强烈相互作用以及人为改造自然环境的共同作用,形成了汉江平原独特的GFS格局。了解汉江平原地下水循环演化及其控制机制,对于促进GFS的实际应用和该地区地下水资源保护具有高度紧迫性和挑战性。基于此,在本研究中,来自中国地质大学(武汉)的研究团队在汉江平原腹地和过渡区进行了相关研究,旨在:(1)基于沉积物粒度特征、粘土孔隙水稳定同位素和古...
2022 - 08 - 22
城市河流水资源是重要的生态资源,是城市生活和生态的根本保障。但是近年来,河流水污染问题日益突出,城市水污染监测、水体保护、生态系统健康动态监测以及修复方法已经成为研究热点。水质监测是水污染控制的基础。传统水质监测主要基于野外采样后的实验室检测和分析,由于空间布局和采样点密度限制,在分析污染物在水面的连续迁移过程或大面积污染时,难以获得反映整个水体生态环境的总时空数据。遥感技术因其快速、实时和非接触操作的独特优势,逐渐成为水质参数反演和水质监测的有效工具。其中,地面遥感监测技术以其小范围、高精度和点源信息获取等优点而取得较好效果。因此,该方法在小流域水质监测方面具有一定优势,可以实现河流水质单一指标的高精度定量反演。然而,基于地面遥感技术进行水质监测时,还存在以下问题亟待解决。一是反演水质指标过于简单,反演精度较低,无法充分反映河流水质信息。其次,常用的回归和反演模型种类繁多,但对相关算法应...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开