北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

华北和东北地区土地利用和气候变化对土壤有机碳的影响

日期: 2020-05-15
浏览次数: 53


华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

土壤有机碳(SOC)源和汇之间的平衡会影响温室气体以及全球气候SOC储量的微小变化会影响碳循环,并可能显著增加或降低大气中的碳浓度。土壤碳的变化受气候和土地利用的影响,并且在不同土壤中也会发生变化。为了更好地理解土壤有机碳的动力学及其驱动因子,作者收集了华北和东北地区1980年代和2000年代的数据,其中2000年代的样品利用ASD Fieldspec ProFR vis–NIR光谱仪进行了漫反射光谱的测定用于土壤碳的预测,并对各个时期土壤有机碳的空间变化进行了数字土壤制图。在1980年代,在30公里的方格中采集了585个土壤样品,并在2003年和2004年对该区域进行了重新采样(1062个样品)。该地区土地利用类型主要是农田,森林和草地。土地利用,地形因素,植被指数,可见近红外光谱和气候因素作为预测因子,使用随机森林预测土壤有机碳浓度及其时间变化。1985年平均土壤有机碳浓度为10.0 g kg-1,而2004年为12.5 g kg-1。在这两个时期中,土壤有机碳变化相似且从南到北增加。据估计土壤有机碳储量在1985年为1.68 Pg,在2004年为1.66 Pg,但是不同土地利用下土壤有机碳变化是不同的。在过去的20年中,平均气温升高,大面积森林和草原转化为农田。农田土壤有机碳增加了0.094 Pg+9%),而森林和草地土壤有机碳分别损失了0.089 Pg−25%)和0.037 Pg−25%)。结论是,土地利用是该地区土壤有机碳变化的主要驱动力,而气候变化在不同地区的贡献则不同。在土地利用的转换下,土壤有机碳损失显著,而农田具有土壤有机碳封存的巨大潜力。


1 结果
1.1 土壤有机碳浓度
2004年样品的总SOC平均浓度为12.5 g kg-1,略高于1985年的SOC浓度(10.0 g kg-1)(2)。在1985年,各土地利用类型表现为农田8.3 g kg-1)<裸地10.0 g kg-1)<草地15.1 g kg-1)<沼泽16.0 g kg-1)<森林17.1 g kg-1)。在2004年表现为裸地11.1 g kg-1)<农田12.2g kg-1)<森林12.7g kg-1)<草地13.3g kg-1)<沼泽20.8 g kg-1)。随着时间的变化,农田,沼泽和裸地土壤的SOC增加了,而森林和草地降低了。1985年的土壤由于较高的标准偏差而显示出比2004年更高的变化(3)。

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.2 土壤有机碳浓度空间模型
4总结了预测模型的校准和独立验证,其中1985年样品的校准LCCC0.910.90–0.92),2004年为0.971985年独立验证LCCC0.650.39-0.902004年为0.840.77-0.90)。在校准和验证水平,1985年的RMSEs均高于2004年。由于样品密度较高,LCCCRMSE较低,因此2004年的模型比1985年的模型更稳定。
2显示了环境协变量在1985年和2004年预测模型中的重要性。在这两个时期一些协变量重要性相似,例如坡度,TWIMBI,温度,降水和土地利用。植被和气候因素是重要的预测指标,尤其是温度,降水,NDVIVNDVI。坡向,曲率和MBI2004SOC预测的贡献不大,且坡向是两个时期中最不重要的因素。2004年土壤样品光谱的PCA在预测模型中表现出很高的重要性。从PC1PC3重要性依次降低。
华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.3 土壤碳的空间变化
3预测了1985年和20040-20 cm表土中SOC浓度。1985年研究区的SOC浓度从南到北增加。在南部,SOC浓度大部分在8g kg-1以下。中部海拔较高,其SOC浓度高于南部。在北部,SOC浓度随纬度显著增加。两个时期SOC的空间分布是相似的。在南半部,SOC浓度在810 g C kg-1之间,高于1985年。在北部,SOC浓度随纬度增加。
由于样品数量和地点的不同,两个时期的不确定性也有所不同(4)。北部地区预测不确定性最低。1985SOC预测的高度不确定性发生在海拔较高的中部和南部边缘。2004年的高度不确定性发生在样品密度较低的中北部地区。

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.4 土壤有机碳的变化
1985年至2004年之间,除农田外,所有土地利用的平均SOC浓度均下降。农是研究区最大的土地利用类型,其SOC浓度增加了0.5 g kg-14)。在森林土壤中,SOC减少量最大,为8.8 g kg-1-38%)。草地上的SOC浓度降低了21%。
研究发现,SOC浓度发生了显著变化,并且在初始浓度较高的地区,SOC的降低幅度更大。SOC的降低主要发生在研究区域的北部(中国东北)。减少量超过6 g kg-1 相反,初始SOC相对较低的南部地区(华北地区)SOC有所提高。
1985年和2004年土壤有机碳总储存量分别为1.68 Pg1.66 Pg。在不同的土地利用类型中,农田含有最多的有机碳,而森林和草地的有机碳含量远少于农田。二十年来森林土壤SOC损失了约25%(5),但农田土壤有机碳却增加了9%。草地土壤有机碳以25%速率增加了0.013 Pg

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.5 土地利用和气候变化对土壤有机碳变化的影响

在华北和东北地区,土地利用对SOC变化的贡献超过温度和降水变化(5)。在整个地区,对SOC变化的贡献中土地利用占38%,温度变化约占9%,而降水变化仅占5%。东北地区(42%)比华北地区(33%)的土地利用占比更大。整个研究区域,特别是东北和华北地区,温度变化对SOC均无显著影响。华北地区降水变化对SOC动态的影响很小(17%),而东北地区几乎没有影响。温度对东北地区的SOC变化没有显著影响,而华北地区占20%。华北地区气候变化对SOC变化的总贡献达到了35%,而土地利用为33%,但在总变化中共有19%的相互作用。
华北和东北地区土地利用和气候变化对土壤有机碳的影响
2 结论
研究估计了1985年至2004年之间0–20 cm表层土壤有机碳浓度和储存量的变化。数字土壤制图方法用随机森林模型中的环境协变量预测了两个时期SOC的空间变化。结果为:
(1) 随机森林可以在大尺度上有效地预测SOC空间变化。在这两个时期中,SOC浓度具有相似的趋势,东北地区的SOC较低,华北平原的SOC较高。华北地区土壤碳增加,而大多数东北地区则减少。
(2) SOC的总体储存量稳定。农田土壤中的碳储量增加0.094 Pg,增长率为9%。森林和草原土壤中发生显著的碳损失,均为-25%
(3) 在中国华北和东北地区,土地利用变化是SOC变化的主要驱动因子。与土地利用变化相比,气候变化对SOC变化的贡献相似,而东北地区的贡献较小。


Land use and climate change effects on soil organic carbon in North and Northeast China.pdf


News / 相关新闻 More
2021 - 01 - 15
全球气候变化引起的预计人口增长以及土地和农业资源可利用性的压力使未来几十年全球粮食供应的需求增加。提高光合作用能力已成为实现作物增产的目标。目前,测量光合作用的方法是耗时的且具破坏性的,这会减慢鉴定具高光合能力的农作物种质的研究和育种工作。作者在1分钟内收集样地(~2 m×2 m)向阳叶片像素的高光谱反射率以量化光合作用参数和色素含量。在两个生长季节(2017年和2018年)利用田间生长的经基因改变了光合途径的烟草,建立了8个光合参数和色素性状的预测模型。利用偏最小二乘法(PLSR)分析可见近红外(400-900 nm)光谱相机测得的植物反射像素,预测了Rubisco最大羧化速率(Vc,max,R2=0.79)和最大电子传递速率(J1800,R2=0.59),最大光饱和光合作用(Pmax,R2=0.54),叶绿素含量(R2=0.87),叶绿素a/b(...
2020 - 09 - 11
【摘要】森林的长期生产力和固碳能力受气候变化影响,已成为全球关注的问题。本研究中,我们提供了一种简单且无损的方法来研究多时间尺度上树木CO2同化率。这种新的方法结合了树干液流和稳定碳同位素分辨率以估算碳同化率。我们通过分析变异性并进行配对样本t检验,比较了气体交换测量和新方法测得的CO2同化率,以验证其准确性和适用性。气体交换和同位素测量都表明早晨CO2同化率高于下午,峰值在10-11 am左右出现,可能是由于夜间的水储存和早晨的高气孔导度。侧柏日,月,年尺度上CO2同化率的变异性与供水条件有关。与以往的研究相比,我们利用稳定碳同位素分辨率(Δ13C)和树干液流测量估算的年CO2同化率的结果与传统方法结果相一致。侧柏对供水可以有效的响应,这就解释了为什么它可以很好地适应半干旱区环境。估算CO2同化率的新方法是准确的,且适用于北京周边的半干旱地区。【研究区域】位于燕山鹫峰国家森林生态系统研究...
2020 - 09 - 01
【摘要】最近研究发现,在混合落叶阔叶林中,相比于叶片氮含量,叶绿素含量可以更好地指示叶片的光合能力。叶片光合能力与叶绿素含量之间关系的一个关键概念就是光合成分(即光收集,光化学和生化成分)的协调调节。为了检验该假设,作者在生长季测量了水稻地叶片氮含量(NLeaf),叶片光合色素(即叶绿素(ChlLeaf),类胡萝卜素(CarLeaf)和叶黄素(XanLeaf))以及叶片光合能力(即1,5-二磷酸核酮糖(RuBP)在25℃被羧化(Vcmax25)和再生(Jmax25)的最大速率)的季节性变化。同时还调查了NLeaf,叶片光合色素,晴天中午的叶片光化学植被指数(PRILeaf,noon)的有效性及其可能的组合,以估算水稻地的叶片光合能力(即Vcmax25和Jmax25)。ChlLeaf与Vcmax25和Jmax25高度相关(R2分别为0.89和0.87),优于NLeaf(R2分别为0.80和0...
2020 - 08 - 20
【摘要】正确理解地下水循环模式及其可更新能力对地下水资源的评估、合理开发和利用至关重要。在干旱或半干旱地区地下水补给量少且变异性高,因此难以估算。同位素研究和混合模型相结合可以直接估计含水层的可更新性。本文利用环境同位素方法研究了中国西北半干旱地区—银川盆地的潜水循环模式以及更新能力,主要研究了不同水体的同位素特征,潜水同位素年龄,水循环模式以及更新速率。结果表明,银川盆地主要有两个补给源,即局部大气降水(占13%)和黄河(占87%)。银川盆地潜水的平均滞留时间是48年,平均更新速率是3.38%/a。潜水具有较强的更新能力,更新速率与同位素年龄一致。【研究区域】位于中国西北地区的银川平原。图1 银川盆地位置图【样品收集和测量】收集了来自全球大气降水监测数据和国际原子能机构的30组降水数据,并收集了11个黄河水样品,47个潜水样品。利用LGR的液态水同位素分析仪测量所有水体的δ18...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

深圳办事处:

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

武汉办事处:

地址:武汉市洪山区民族大道124号龙安港汇城A座1108 手机:13910499761


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开