北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

日期: 2020-07-30
浏览次数: 24

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

雪反照率可用于估算雪崩,美国国家航空航天局机载降雪观测台将其与激光雷达联合用于测量雪深。

反照率(或“白度”)是单位时间,单位面积上各方向出射的总辐射能量与入射的总辐射能量之比,其测量范围从0(对应于吸收所有入射辐射的黑体)到1(对应于反射所有入射辐射体)。根据Wikipedia的说法“雪反照率变化很大,可以从0.9(刚落下的雪)到0.4(融化的雪)到0.2(脏雪)。南极洲平均雪反照率略高于0.8。如果积雪区域边缘变暖,雪易于融化,会降低反照率,因此积雪吸收了更多的辐射导致了更多的融雪。”

在所附的文章中“The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo”特别提到了ITRES CASI在测量雪反照率上的重要性。


【摘要】

在世界许多山区,积雪覆盖和融化主导着区域气候和水资源。山区的融雪时间和量级主要受太阳辐射的吸收和雪水当量(SWE)的分布控制,但是即使在全球仪器设备最完善的山区,对其了解和认识仍不充分。本研究中我们描述并介绍了机载降雪观测台(ASO)的结果,它耦合了成像光谱仪,扫描激光雷达以及积雪分布模型以测定积雪光谱反照率/宽波段反照率和雪深/SWE。在该区域模拟积雪密度,将雪深转化为SWE。本文介绍的结果是遥感雪反照率和雪深/SWE在量化季节性积雪中存储水量上的首次应用。为冰冻圈科学研究提供了前所未有的积雪性质和分布知识,并为未来水管理模型和系统提供空间上全面且可靠的输入。ASO提供的每周SWE值表明,山区水文科学家和资源管理者可获得的信息急剧增加。

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

彩色:ASO扫描激光雷达(Riegl Q1560);灰度:成像光谱仪(Itres CASI-1500)

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

左侧和右侧分别显示了ASO的雷达和光谱仪(CASI)管线

据美国国家航空航天局网站称:“沙漠系统温度升高会增加山区积雪的粉尘负荷,从而降低积雪反照率并加速融雪径流。了解融雪径流和时间两个最重要的特性是雪水当量(SWE)和雪反照率的时空分布。尽管其在控制径流量和时间的重要性,但在美国(甚至是全球大部分地区)积雪反照率和SWE的量化程度仍然很差,导致径流模型约束性很差。”

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

(A)雪深图;(B)雪密度图(n=180);(C)雪水当量;(D)雪反照率;

结论】

尽管我们对雪物理性质,雪水文学以及冰川学方面有了更多的理解,但到目前为止,我们量化雪空间分布的能力相对较简单。因此,径流和水可利用性的估计和预测必须依赖于根据往年观测值校正的索引关系。这些方法极易受到异常条件的影响-在记录时期内条件不佳-在日益变化的新的定量测量降雪的能力至关重要。

ASO通过高分辨率直接测量雪深,捕获了山区流域积雪空间变异性的主要来源,并结合积雪密度观测和建模,重复估算了第一个流域范围的雪水当量。ASO还量化了雪的属性中,影响融雪速率的决定因素,即雪反照率。总之,ASO方法提供了一条新的途径,可以在降雪为主的地区推进水文科学的发展,并实现下一代水资源管理的适应性。


点击阅读原文

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率.pdf


News / 相关新闻 More
2020 - 09 - 11
【摘要】森林的长期生产力和固碳能力受气候变化影响,已成为全球关注的问题。本研究中,我们提供了一种简单且无损的方法来研究多时间尺度上树木CO2同化率。这种新的方法结合了树干液流和稳定碳同位素分辨率以估算碳同化率。我们通过分析变异性并进行配对样本t检验,比较了气体交换测量和新方法测得的CO2同化率,以验证其准确性和适用性。气体交换和同位素测量都表明早晨CO2同化率高于下午,峰值在10-11 am左右出现,可能是由于夜间的水储存和早晨的高气孔导度。侧柏日,月,年尺度上CO2同化率的变异性与供水条件有关。与以往的研究相比,我们利用稳定碳同位素分辨率(Δ13C)和树干液流测量估算的年CO2同化率的结果与传统方法结果相一致。侧柏对供水可以有效的响应,这就解释了为什么它可以很好地适应半干旱区环境。估算CO2同化率的新方法是准确的,且适用于北京周边的半干旱地区。【研究区域】位于燕山鹫峰国家森林生态系统研究...
2020 - 09 - 01
【摘要】最近研究发现,在混合落叶阔叶林中,相比于叶片氮含量,叶绿素含量可以更好地指示叶片的光合能力。叶片光合能力与叶绿素含量之间关系的一个关键概念就是光合成分(即光收集,光化学和生化成分)的协调调节。为了检验该假设,作者在生长季测量了水稻地叶片氮含量(NLeaf),叶片光合色素(即叶绿素(ChlLeaf),类胡萝卜素(CarLeaf)和叶黄素(XanLeaf))以及叶片光合能力(即1,5-二磷酸核酮糖(RuBP)在25℃被羧化(Vcmax25)和再生(Jmax25)的最大速率)的季节性变化。同时还调查了NLeaf,叶片光合色素,晴天中午的叶片光化学植被指数(PRILeaf,noon)的有效性及其可能的组合,以估算水稻地的叶片光合能力(即Vcmax25和Jmax25)。ChlLeaf与Vcmax25和Jmax25高度相关(R2分别为0.89和0.87),优于NLeaf(R2分别为0.80和0...
2020 - 08 - 20
【摘要】正确理解地下水循环模式及其可更新能力对地下水资源的评估、合理开发和利用至关重要。在干旱或半干旱地区地下水补给量少且变异性高,因此难以估算。同位素研究和混合模型相结合可以直接估计含水层的可更新性。本文利用环境同位素方法研究了中国西北半干旱地区—银川盆地的潜水循环模式以及更新能力,主要研究了不同水体的同位素特征,潜水同位素年龄,水循环模式以及更新速率。结果表明,银川盆地主要有两个补给源,即局部大气降水(占13%)和黄河(占87%)。银川盆地潜水的平均滞留时间是48年,平均更新速率是3.38%/a。潜水具有较强的更新能力,更新速率与同位素年龄一致。【研究区域】位于中国西北地区的银川平原。图1 银川盆地位置图【样品收集和测量】收集了来自全球大气降水监测数据和国际原子能机构的30组降水数据,并收集了11个黄河水样品,47个潜水样品。利用LGR的液态水同位素分析仪测量所有水体的δ18...
2020 - 08 - 13
冷害是造成作物严重损失和不可逆转伤害的灾害之一。为避免产量损失,可利用高通量表型选择耐寒胁迫的作物品种。如今,无损光谱图像分析已成为一种有效方法,并已广泛应用于高通量表型分析中,反映出植物结构组成,生长发育过程中的生理,生化特性和特征。本研究利用卷积神经网络(CNN)模型提取可见-近红外范围的特征光谱估计玉米幼苗的冷害。文中以五个品种的冷处理玉米幼苗的高光谱图像为研究对象。光谱范围为450-885 nm。高斯低通滤波和Savitzky-Golay平滑方法结合一阶导数进行光谱数据的预处理。从每种玉米幼苗选定的感兴趣区域获取3600个像素样本用于CNN建模。CNN模型建立后,从高光谱图像中提取400个像素样本作为每个品种的测试集。最后,通过分析分类准确度和计算效率确定一个CNN模型。CNN检测到的不同类型的玉米幼苗的冷害水平分别为W22 (41.8 %),BxM (35%),...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(研发、售后)
          光华创业园科研楼二层东侧(销售、市场)
电话:010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

深圳办事处:

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

武汉办事处:

地址:武汉市洪山区民族大道124号龙安港汇城A座1108 手机:13911500497,13910499761


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开