北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

华北和东北地区土地利用和气候变化对土壤有机碳的影响

日期: 2020-05-15
浏览次数: 79


华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

土壤有机碳(SOC)源和汇之间的平衡会影响温室气体以及全球气候SOC储量的微小变化会影响碳循环,并可能显著增加或降低大气中的碳浓度。土壤碳的变化受气候和土地利用的影响,并且在不同土壤中也会发生变化。为了更好地理解土壤有机碳的动力学及其驱动因子,作者收集了华北和东北地区1980年代和2000年代的数据,其中2000年代的样品利用ASD Fieldspec ProFR vis–NIR光谱仪进行了漫反射光谱的测定用于土壤碳的预测,并对各个时期土壤有机碳的空间变化进行了数字土壤制图。在1980年代,在30公里的方格中采集了585个土壤样品,并在2003年和2004年对该区域进行了重新采样(1062个样品)。该地区土地利用类型主要是农田,森林和草地。土地利用,地形因素,植被指数,可见近红外光谱和气候因素作为预测因子,使用随机森林预测土壤有机碳浓度及其时间变化。1985年平均土壤有机碳浓度为10.0 g kg-1,而2004年为12.5 g kg-1。在这两个时期中,土壤有机碳变化相似且从南到北增加。据估计土壤有机碳储量在1985年为1.68 Pg,在2004年为1.66 Pg,但是不同土地利用下土壤有机碳变化是不同的。在过去的20年中,平均气温升高,大面积森林和草原转化为农田。农田土壤有机碳增加了0.094 Pg+9%),而森林和草地土壤有机碳分别损失了0.089 Pg−25%)和0.037 Pg−25%)。结论是,土地利用是该地区土壤有机碳变化的主要驱动力,而气候变化在不同地区的贡献则不同。在土地利用的转换下,土壤有机碳损失显著,而农田具有土壤有机碳封存的巨大潜力。


1 结果
1.1 土壤有机碳浓度
2004年样品的总SOC平均浓度为12.5 g kg-1,略高于1985年的SOC浓度(10.0 g kg-1)(2)。在1985年,各土地利用类型表现为农田8.3 g kg-1)<裸地10.0 g kg-1)<草地15.1 g kg-1)<沼泽16.0 g kg-1)<森林17.1 g kg-1)。在2004年表现为裸地11.1 g kg-1)<农田12.2g kg-1)<森林12.7g kg-1)<草地13.3g kg-1)<沼泽20.8 g kg-1)。随着时间的变化,农田,沼泽和裸地土壤的SOC增加了,而森林和草地降低了。1985年的土壤由于较高的标准偏差而显示出比2004年更高的变化(3)。

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.2 土壤有机碳浓度空间模型
4总结了预测模型的校准和独立验证,其中1985年样品的校准LCCC0.910.90–0.92),2004年为0.971985年独立验证LCCC0.650.39-0.902004年为0.840.77-0.90)。在校准和验证水平,1985年的RMSEs均高于2004年。由于样品密度较高,LCCCRMSE较低,因此2004年的模型比1985年的模型更稳定。
2显示了环境协变量在1985年和2004年预测模型中的重要性。在这两个时期一些协变量重要性相似,例如坡度,TWIMBI,温度,降水和土地利用。植被和气候因素是重要的预测指标,尤其是温度,降水,NDVIVNDVI。坡向,曲率和MBI2004SOC预测的贡献不大,且坡向是两个时期中最不重要的因素。2004年土壤样品光谱的PCA在预测模型中表现出很高的重要性。从PC1PC3重要性依次降低。
华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.3 土壤碳的空间变化
3预测了1985年和20040-20 cm表土中SOC浓度。1985年研究区的SOC浓度从南到北增加。在南部,SOC浓度大部分在8g kg-1以下。中部海拔较高,其SOC浓度高于南部。在北部,SOC浓度随纬度显著增加。两个时期SOC的空间分布是相似的。在南半部,SOC浓度在810 g C kg-1之间,高于1985年。在北部,SOC浓度随纬度增加。
由于样品数量和地点的不同,两个时期的不确定性也有所不同(4)。北部地区预测不确定性最低。1985SOC预测的高度不确定性发生在海拔较高的中部和南部边缘。2004年的高度不确定性发生在样品密度较低的中北部地区。

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.4 土壤有机碳的变化
1985年至2004年之间,除农田外,所有土地利用的平均SOC浓度均下降。农是研究区最大的土地利用类型,其SOC浓度增加了0.5 g kg-14)。在森林土壤中,SOC减少量最大,为8.8 g kg-1-38%)。草地上的SOC浓度降低了21%。
研究发现,SOC浓度发生了显著变化,并且在初始浓度较高的地区,SOC的降低幅度更大。SOC的降低主要发生在研究区域的北部(中国东北)。减少量超过6 g kg-1 相反,初始SOC相对较低的南部地区(华北地区)SOC有所提高。
1985年和2004年土壤有机碳总储存量分别为1.68 Pg1.66 Pg。在不同的土地利用类型中,农田含有最多的有机碳,而森林和草地的有机碳含量远少于农田。二十年来森林土壤SOC损失了约25%(5),但农田土壤有机碳却增加了9%。草地土壤有机碳以25%速率增加了0.013 Pg

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.5 土地利用和气候变化对土壤有机碳变化的影响

在华北和东北地区,土地利用对SOC变化的贡献超过温度和降水变化(5)。在整个地区,对SOC变化的贡献中土地利用占38%,温度变化约占9%,而降水变化仅占5%。东北地区(42%)比华北地区(33%)的土地利用占比更大。整个研究区域,特别是东北和华北地区,温度变化对SOC均无显著影响。华北地区降水变化对SOC动态的影响很小(17%),而东北地区几乎没有影响。温度对东北地区的SOC变化没有显著影响,而华北地区占20%。华北地区气候变化对SOC变化的总贡献达到了35%,而土地利用为33%,但在总变化中共有19%的相互作用。
华北和东北地区土地利用和气候变化对土壤有机碳的影响
2 结论
研究估计了1985年至2004年之间0–20 cm表层土壤有机碳浓度和储存量的变化。数字土壤制图方法用随机森林模型中的环境协变量预测了两个时期SOC的空间变化。结果为:
(1) 随机森林可以在大尺度上有效地预测SOC空间变化。在这两个时期中,SOC浓度具有相似的趋势,东北地区的SOC较低,华北平原的SOC较高。华北地区土壤碳增加,而大多数东北地区则减少。
(2) SOC的总体储存量稳定。农田土壤中的碳储量增加0.094 Pg,增长率为9%。森林和草原土壤中发生显著的碳损失,均为-25%
(3) 在中国华北和东北地区,土地利用变化是SOC变化的主要驱动因子。与土地利用变化相比,气候变化对SOC变化的贡献相似,而东北地区的贡献较小。


Land use and climate change effects on soil organic carbon in North and Northeast China.pdf


News / 相关新闻 More
2024 - 04 - 18
大兴安岭地处中国东北,这里的气候寒冷干燥,冬季漫长而严寒,夏季则短暂而凉爽,适宜白桦的生长。亭亭白桦,悠悠碧空,微微南来风。春天,是大兴安岭的白桦树复苏的季节。雪融水润,大地回春,在这神秘而美丽的土地上,白桦树以其独特的水分利用能力,展现出了大自然魅力。大兴安岭南部白桦的水分利用规律及其对干旱环境的适应性本研究旨在考察大兴安岭南部天然次生林中主要植物白桦(Betula platyphylla)的水分利用模式。该调查利用氧稳定同位素技术,时间跨度涵盖2019年7月至2020年9月。东北地区研究区的位置及其森林分布(绿色)。“其他”是指林地(灰色)以外的土地利用类型。在两年的时间里,在纯白桦林内建立的 30 m × 30 m 的样地内进行了季节性田间试验。作者选择了五棵健康的白桦木,其高度和胸径接近研究区域的平均值。样地土壤剖面较浅(厚度约为 40-70 厘米)土壤采样在每月中旬无雨...
2024 - 04 - 15
中国农业发生于新石器时代。中国农业的生产结构包括种植业、林业、畜牧业、渔业和副业;但数千年来一直以种植业为主。东北地区的黑土地,是宝贵的农业资源。黑土地的土壤富含有机质,深黑色的沃土,沉甸甸的感觉让人感受到这片土地的肥沃。在现代农业生产中,科技的应用在这片沃土上也发挥着至关重要的作用,科研团队利用机载高光谱对黑土地的土壤有机质做了相关研究。使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘快速获取田间尺度土壤有机质(SOM)的高分辨率空间分布对于精准农业至关重要。无人机成像高光谱技术以其高空间分辨率和时效性,可以填补地面监测和遥感的研究空白。本研究旨在测试在中国东北典型低地势黑土地区使用无人机高光谱数据(400–1000 nm)和小型校准样本集进行1 m分辨率SOM绘图的可行性。该实验在大约20公顷的土地上进行。为了进行校准,使用 100 × 100 m 网格采...
2024 - 03 - 04
有机蔬菜,是指在蔬菜生产过程中严格按照有机生产规程,禁止使用任何化学合成的农药、化肥、生长调节剂等化学物质,以及基因工程生物及其产物,而是遵循自然规律和生态学原理,采取一系列可持续发展的农业技术,协调种植平衡,维持农业生态系统持续稳定,且经过有机食品认证机构鉴定认证,并颁发有机食品证书的蔬菜产品。关于如何快速鉴别有机蔬菜与非有机蔬菜,光谱仪器的应用提供了新的思路。一起来了解一下今日推荐的文章。使用 VIS-NIR 光谱仪通过特征波长和线性判别分析法快速区分有机和非有机叶菜(空心菜、苋菜、生菜和小白菜)当前有机叶类蔬菜面临着可能被非有机产品替代以及容易脱水和变质的挑战。为了解决这些问题,本研究采用ASD FieldSpec 4 便携式地物光谱仪 结合线性判别分析 (LDA) 来快速区分有机和非有机叶菜。有机类包括有机空心菜 (Ipomoea Aquatica Forsskal)、苋菜 (Am...
2024 - 02 - 28
微塑料是指直径小于5毫米的塑料颗粒,它们主要来源于塑料制品的磨损、降解和破碎,对环境和生态系统产生了不容忽视的影响。微塑料广泛分布在河流、湖泊、海洋等水体中,对水环境会造成污染,也可被水生生物摄取,进而在食物链中传递,最终影响到人类健康。此外,微塑料还可能影响浮游动物的摄食、生长和繁殖,从而影响整个生态系统的功能。针对微塑料是否会影响生物扰动活动,国外的一组团队展开了研究。淡水沉积物中的微塑料影响主要生物扰动者在生态系统功能中的作用 微塑料(粒径≤5mm)是塑料废物中的一部分,会通过沿海径流和河流进入到海洋。根据其密度差异,或漂浮在水中或进入沉积物中。沉积物-水界面是水中生物主要活动区,通过生物地球化学过程在生态系统功能中发挥着重要作用。这些生物地球化学过程主要由微生物活动驱动,而底栖无脊椎动物生物扰动作用明显,可凭借进食、排泄、推土、掘穴以及建造洞穴、土堆和坑等行为影响各界面间...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开