北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

黄土高原不同人工林中常见树种的水分利用特征

日期: 2020-05-29
浏览次数: 187

黄土高原不同人工林中常见树种的水分利用特征

摘要:了解再生物种的水分利用特征对于理解土壤与植物之间的相互作用机制以及指导水资源受限生态系统中的生态恢复策略具有深远的意义。尽管植树造林是改善退化生态系统功能和服务的重要途径,但对不同人工林类型中优势种的水分利用特征的了解甚少。作者调查了黄土高原三种代表性人工林(三种落叶树种刺槐、山杏和臭椿组成的混合人工林,纯刺槐人工林,纯山杏人工林)的植物水分利用特征。作者测量了每种人工林中优势种叶片的δ13C以及木质部和土壤(400 cm)水分的δ2H和δ18O。结果表明,混合人工林中三个主要树种在水源贡献比例上表现出显著的差异(P<0.05),表明植物具有水源隔离作用。与纯山杏人工林相比,混合人工林中的山杏利用更大比例的浅层土壤水,相应地减少了对深层土壤水的消耗。然而,在不同人工林中,刺槐水分吸收比例未表现出显著差异。混合人工林中植物叶片的δ13C显著高于纯人工林的。不同人工林中,刺槐叶片的δ13C与SWC呈正相关关系,而山杏中未观察到这种关系。结果表明人工林类型会影响植物水分利用特征,具有对人工林类型的物种特异性响应,以及种间竞争和种内竞争之间不同的水源竞争效应。

研究区域

该研究是在陕西省羊圈沟流域进行的(36°42′45″ N,109°31′45″)。该流域是黄土高原中部的黄土丘陵沟壑区。

黄土高原不同人工林中常见树种的水分利用特征

样品采集

作者于2016年植物生长季节5-9月采集了植物叶片样品用于δ13C的测定,采集木质部样品用于δ2H和δ18O的测定,采集了0-400 cm的土壤样品共630个,用于土壤含水量和土壤水δ2H和δ18O的测定,同时收集了46个降雨样品。利用LI-2100全自动真空冷凝抽提系统抽提植物木质部和土壤水分,利用LGR的液态水同位素分析仪测定土壤和降雨样品的δ2H和δ18O。黄土高原植物根系无法到达地下水深度,且该研究区域无灌溉,所以植物的主要水源是土壤水。


结果

1.土壤和木质部水的同位素组成

图2显示了不同人工林土壤水δ2H和δ18O随土壤深度和季节的变化。混合人工林中,土壤水δ18O平均值为-8.88±1.75‰,δ2H平均值为-67.14±11.86‰。纯刺槐林土壤水δ2H和δ18O平均值分别为-64.06±25.12‰和-8.71±3.53‰。纯山杏林土壤水δ2H和δ18O平均值分别为-67.78±12.57‰和 -8.66±2.13‰。土壤水同位素沿土壤剖面表现出明显的变化。浅层土壤水同位素富集且随季节变化更大。随深度变化深层土壤水同位素贫化且随季节变化小。每种人工林土壤水同位素组成在不同季节和土壤不同深度之间显著不同(P<0.001)。然而,不同人工林土壤水同位素组成无显著差异(δ2H,P=0.052;δ18O,P=0.61)。

黄土高原不同人工林中常见树种的水分利用特征

木质部水同位素组成随季节和物种变化。混合人工林中,刺槐木质部水δ18O平均值为-8.41±0.72‰,δ2H平均值为-67.57±4.37‰,山杏木质部水δ18O平均值为-7.21±1.42‰,δ2H平均值为-59.68±7.42‰,臭椿木质部水δ18O平均值为-7.72±0.89‰,δ2H平均值为-64.53±4.56‰。纯刺槐林木质部水δ18O变化范围为-9.35~-5.98‰,δ2H变化范围为-75.36~-55.68‰。纯山杏林木质部水δ18O平均值为-7.20±1.33‰,δ2H平均值为-61.49±6.25‰。混合人工林中不同物种木质部水同位素显著不同(P<0.001)。此外,木质部水δ2H和δ18O随季节变化表现出显著差异(P<0.001)。大多数土壤水同位素位于地区大气降水线(LMVL)右侧,木质部水的δ2H和δ18O位于土壤水同位素范围内(图3),这表明植物主要从不同土壤层获取水分。

黄土高原不同人工林中常见树种的水分利用特征

2.土壤水可利用性和植物水源分配

不同人工林的SWC表现出明显的季节和垂直变化(图4)。研究期混合人工林的平均SWC是7.01±1.70%,纯刺槐林为6.68±1.46%,纯山杏林为7.13±2.19%。研究期混合人工林浅层土壤含水量最高,而纯刺槐林深层土壤含水量最低。浅层土壤水随季节波动较大,而深层土壤水随季节变化较小。不同人工林浅层和中层土壤含水量无显著差异,而深层土壤水分差异显著(P<0.001)。此外,3个人工林土壤含水量在不同季节之间差异显著(P<0.01)。总而言之,不同人工林之间土壤水分存在显著差异(P<0.05)。

黄土高原不同人工林中常见树种的水分利用特征

生长季植物主要吸收浅层和中层土壤水(图5)。混合人工林中刺槐74.86%的水分以及臭椿75.62%的水分均来源于浅层和中层土壤水。而山杏吸收最大比例的浅层土壤水(60.96%)。在整个生长季,中层和深层土壤水对纯刺槐林的贡献比例分别为32.88%和27.14%。浅层和中层土壤水对纯山杏林的贡献比例分别为43.58%和32.12%。混合人工林中,不同月份之间3个物种水分吸收比例具有显著差异(P<0.05)。混合人工林和纯刺槐林中刺槐从不同土壤层吸收的水分比例无显著差异。然而,混合人工林和纯山杏林中山杏对浅层土壤水分利用比例存在显著差异(P<0.05),对中层和深层土壤水分的利用无显著差异。此外,不同季节之间浅层、中层和深层土壤水对混合人工林中臭椿以及纯山杏林的贡献比例无显著差异。

黄土高原不同人工林中常见树种的水分利用特征

3.植物叶片的δ13C值

图6显示了采样期间植物叶片的δ13C值随季节和植物物种的变化。混合人工林中刺槐,山杏和臭椿植物叶片δ13C平均值分别为-26.77±0.58‰,-26.28±0.54‰和-26.64±0.75‰。纯山杏林植物叶片δ13C值低于混合人工林。采样期间纯刺槐林植物叶片δ13C值最低(-28.00±0.80‰)。总而言之,不同季节,不同物种之间植物叶片δ13C值具有显著差异(P<0.05)。混合人工林中,山杏植物叶片δ13C值显著不同于刺槐和臭椿,且表现出显著的季节变化。此外,混合人工林和纯刺槐林中的刺槐植物叶片δ13C值表现出显著差异(P<0.001)。混合人工林和纯山杏林中的山杏植物叶片δ13C值也表现出显著差异(P<0.001)。

黄土高原不同人工林中常见树种的水分利用特征

4.植物叶片δ13C值与土壤含水量之间的关系

如图7所示,混合人工林中刺槐植物叶片δ13C值与土壤含水量的关系与纯刺槐林不一致。尽管混合人工林和纯刺槐林中刺槐植物叶片的δ13C值与土壤含水量呈正相关关系,但与纯刺槐林相比,混合人工林中的关系较弱(混合人工林:R2=0.25,P=0.06,纯刺槐林:R2=0.53,P=0.002)。然而,混合人工林和纯山杏林中山杏植物叶片的δ13C值与土壤含水量无显著相关性。

黄土高原不同人工林中常见树种的水分利用特征

结论

本研究利用稳定同位素技术研究了半干旱黄土高原不同人工林植物的水分利用特征。结果表明3种共存树种对不同土层的利用比例具有显著差异(P<0.05),表明这些物种具有水文生态位隔离。土壤水对不同人工林中刺槐的贡献无显著差异。然而,浅层土壤水对不同人工林中山杏的贡献具有显著差异,中层和深层土壤水对其贡献无显著差异。混合人工林中植物叶片δ13C值显著高于纯人工林,这表明混合人工林中叶片水平的WUEi明显提高。此外,与纯山杏林相比,混合人工林中山杏利用更大比例的浅层土壤水,相应地,深层土壤水消耗较少。这些结果表明人工林类型会影响植物水分来源分配,且存在对人工林类型的物种特异性响应。该研究为干旱和半干旱生态系统植树造林和生态管理提供了重要的基线信息和见解。

黄土高原不同人工林中常见树种的水分利用特征.pdf


News / 相关新闻 More
2024 - 04 - 18
大兴安岭地处中国东北,这里的气候寒冷干燥,冬季漫长而严寒,夏季则短暂而凉爽,适宜白桦的生长。亭亭白桦,悠悠碧空,微微南来风。春天,是大兴安岭的白桦树复苏的季节。雪融水润,大地回春,在这神秘而美丽的土地上,白桦树以其独特的水分利用能力,展现出了大自然魅力。大兴安岭南部白桦的水分利用规律及其对干旱环境的适应性本研究旨在考察大兴安岭南部天然次生林中主要植物白桦(Betula platyphylla)的水分利用模式。该调查利用氧稳定同位素技术,时间跨度涵盖2019年7月至2020年9月。东北地区研究区的位置及其森林分布(绿色)。“其他”是指林地(灰色)以外的土地利用类型。在两年的时间里,在纯白桦林内建立的 30 m × 30 m 的样地内进行了季节性田间试验。作者选择了五棵健康的白桦木,其高度和胸径接近研究区域的平均值。样地土壤剖面较浅(厚度约为 40-70 厘米)土壤采样在每月中旬无雨...
2024 - 04 - 15
中国农业发生于新石器时代。中国农业的生产结构包括种植业、林业、畜牧业、渔业和副业;但数千年来一直以种植业为主。东北地区的黑土地,是宝贵的农业资源。黑土地的土壤富含有机质,深黑色的沃土,沉甸甸的感觉让人感受到这片土地的肥沃。在现代农业生产中,科技的应用在这片沃土上也发挥着至关重要的作用,科研团队利用机载高光谱对黑土地的土壤有机质做了相关研究。使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘快速获取田间尺度土壤有机质(SOM)的高分辨率空间分布对于精准农业至关重要。无人机成像高光谱技术以其高空间分辨率和时效性,可以填补地面监测和遥感的研究空白。本研究旨在测试在中国东北典型低地势黑土地区使用无人机高光谱数据(400–1000 nm)和小型校准样本集进行1 m分辨率SOM绘图的可行性。该实验在大约20公顷的土地上进行。为了进行校准,使用 100 × 100 m 网格采...
2024 - 03 - 04
有机蔬菜,是指在蔬菜生产过程中严格按照有机生产规程,禁止使用任何化学合成的农药、化肥、生长调节剂等化学物质,以及基因工程生物及其产物,而是遵循自然规律和生态学原理,采取一系列可持续发展的农业技术,协调种植平衡,维持农业生态系统持续稳定,且经过有机食品认证机构鉴定认证,并颁发有机食品证书的蔬菜产品。关于如何快速鉴别有机蔬菜与非有机蔬菜,光谱仪器的应用提供了新的思路。一起来了解一下今日推荐的文章。使用 VIS-NIR 光谱仪通过特征波长和线性判别分析法快速区分有机和非有机叶菜(空心菜、苋菜、生菜和小白菜)当前有机叶类蔬菜面临着可能被非有机产品替代以及容易脱水和变质的挑战。为了解决这些问题,本研究采用ASD FieldSpec 4 便携式地物光谱仪 结合线性判别分析 (LDA) 来快速区分有机和非有机叶菜。有机类包括有机空心菜 (Ipomoea Aquatica Forsskal)、苋菜 (Am...
2024 - 02 - 28
微塑料是指直径小于5毫米的塑料颗粒,它们主要来源于塑料制品的磨损、降解和破碎,对环境和生态系统产生了不容忽视的影响。微塑料广泛分布在河流、湖泊、海洋等水体中,对水环境会造成污染,也可被水生生物摄取,进而在食物链中传递,最终影响到人类健康。此外,微塑料还可能影响浮游动物的摄食、生长和繁殖,从而影响整个生态系统的功能。针对微塑料是否会影响生物扰动活动,国外的一组团队展开了研究。淡水沉积物中的微塑料影响主要生物扰动者在生态系统功能中的作用 微塑料(粒径≤5mm)是塑料废物中的一部分,会通过沿海径流和河流进入到海洋。根据其密度差异,或漂浮在水中或进入沉积物中。沉积物-水界面是水中生物主要活动区,通过生物地球化学过程在生态系统功能中发挥着重要作用。这些生物地球化学过程主要由微生物活动驱动,而底栖无脊椎动物生物扰动作用明显,可凭借进食、排泄、推土、掘穴以及建造洞穴、土堆和坑等行为影响各界面间...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开