北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

日期: 2020-07-09
浏览次数: 24

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

本文旨在利用高光谱数据建立一个准确、可解释的植物病害识别模型。由真菌引起的大豆炭腐病是一种严重影响大豆产量的世界性病害。在383-1032 nm范围内,Resonon高光谱成像仪在240个不同的波长处捕获高光谱图像。针对大豆炭腐病,科学家建立了3D卷积分网络模型,模型分类精度为95.73%,并利用可视化显著图检验训练模型、敏感像素位置以及分类的特征敏感波段,发现:敏感特征波段为733 nm,这和常用的鉴别植物健康程度的特征波段范围(700-1000nm)是一致的。

【试验方法】

感染炭腐病的大豆:分别在第3691215天采集健康的和受感染的大豆茎秆样品,在测量病害程度之前,实时采集健康的和收到感染的茎秆的高光谱图像。

测量仪器:美国Resonon高光谱成像仪,型号:Pika XC (包含安装支架、移动平台、操作软件和270 w卤素灯)。

Pika XC性能:光谱通道数:240;波段范围400-1000 nm;分辨率:2.5 nm


植物病害的高光谱图像解译识别:3D-CNN与显著图模型

a)室内高光谱成像系统

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

(b)不同光谱波段的大豆茎秆样品高光谱图像 (c)大豆茎秆内外部RGB图像病害程度比较

3D-CNN模型由两个连接的卷积分模型组成,其中,一个小的构架用于防止训练模型过饱和。2个图层(3*3mm空间维度,16个波段的光谱维度)作为第一个卷积分分层,4个3*3*16的图层作为第二个卷积分层,修正线性输入模型作为输出层。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

【结果分析】

1.  539个测试图像用于3d-cnn模型的精度评估。

如表1所示:模型分类准确为95.73%0.92的分类精度也体现了不同病害阶段的普适性。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

2.  可视化显著图评价

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

我们可视化了用显著图分类出来的部分图像, 最大分类得分的输入图像用于判别敏感像素位置。图三为感染病害和健康图像的显著图。每个像素的级别大小用于评价其在分类过程中的重要性。受感染茎秆图像的显著图比图像中严重感染区域(红棕色)对应的位置具有更高的数值。这表明,严重感染的图像区域包含最敏感的像素位置,可以预测受感染分数。无论是健康图像还是感染图像,显著图高值都集中在茎的中部区域。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型


测试图像的直方图数据,代表了每个波长最大显著图的图像像元百分比C*=130 (733 nm)

1)在测试数据中,近红外区的波长733 nm (C*=130)是所有波长中最敏感的;

2)在703 ~ 744 nm的光谱范围内,15个波长在测试图像的像素位置中占33%,是梯度值的最大值;

3)受感染样本的可见光谱波长(400-700 nm)比健康样本更敏感。

【结果分析】

数据结果证明了3D-CDD模型可以有效地学习高维的高光谱数据,应用于大豆炭腐病鉴别领域。从生理学机理角度,可视化显著图解释了高光谱特征波段在分类中的重要性,使模型更具有说服力。因此,我们对于该模型更加自信,在未来,基于鲁棒可解释机制的波段选择将有助于高光谱数据的降维,也将有助于设计高通量表型分析的多光谱摄成像系统。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型.pdf


News / 相关新闻 More
2020 - 09 - 11
【摘要】森林的长期生产力和固碳能力受气候变化影响,已成为全球关注的问题。本研究中,我们提供了一种简单且无损的方法来研究多时间尺度上树木CO2同化率。这种新的方法结合了树干液流和稳定碳同位素分辨率以估算碳同化率。我们通过分析变异性并进行配对样本t检验,比较了气体交换测量和新方法测得的CO2同化率,以验证其准确性和适用性。气体交换和同位素测量都表明早晨CO2同化率高于下午,峰值在10-11 am左右出现,可能是由于夜间的水储存和早晨的高气孔导度。侧柏日,月,年尺度上CO2同化率的变异性与供水条件有关。与以往的研究相比,我们利用稳定碳同位素分辨率(Δ13C)和树干液流测量估算的年CO2同化率的结果与传统方法结果相一致。侧柏对供水可以有效的响应,这就解释了为什么它可以很好地适应半干旱区环境。估算CO2同化率的新方法是准确的,且适用于北京周边的半干旱地区。【研究区域】位于燕山鹫峰国家森林生态系统研究...
2020 - 09 - 01
【摘要】最近研究发现,在混合落叶阔叶林中,相比于叶片氮含量,叶绿素含量可以更好地指示叶片的光合能力。叶片光合能力与叶绿素含量之间关系的一个关键概念就是光合成分(即光收集,光化学和生化成分)的协调调节。为了检验该假设,作者在生长季测量了水稻地叶片氮含量(NLeaf),叶片光合色素(即叶绿素(ChlLeaf),类胡萝卜素(CarLeaf)和叶黄素(XanLeaf))以及叶片光合能力(即1,5-二磷酸核酮糖(RuBP)在25℃被羧化(Vcmax25)和再生(Jmax25)的最大速率)的季节性变化。同时还调查了NLeaf,叶片光合色素,晴天中午的叶片光化学植被指数(PRILeaf,noon)的有效性及其可能的组合,以估算水稻地的叶片光合能力(即Vcmax25和Jmax25)。ChlLeaf与Vcmax25和Jmax25高度相关(R2分别为0.89和0.87),优于NLeaf(R2分别为0.80和0...
2020 - 08 - 20
【摘要】正确理解地下水循环模式及其可更新能力对地下水资源的评估、合理开发和利用至关重要。在干旱或半干旱地区地下水补给量少且变异性高,因此难以估算。同位素研究和混合模型相结合可以直接估计含水层的可更新性。本文利用环境同位素方法研究了中国西北半干旱地区—银川盆地的潜水循环模式以及更新能力,主要研究了不同水体的同位素特征,潜水同位素年龄,水循环模式以及更新速率。结果表明,银川盆地主要有两个补给源,即局部大气降水(占13%)和黄河(占87%)。银川盆地潜水的平均滞留时间是48年,平均更新速率是3.38%/a。潜水具有较强的更新能力,更新速率与同位素年龄一致。【研究区域】位于中国西北地区的银川平原。图1 银川盆地位置图【样品收集和测量】收集了来自全球大气降水监测数据和国际原子能机构的30组降水数据,并收集了11个黄河水样品,47个潜水样品。利用LGR的液态水同位素分析仪测量所有水体的δ18...
2020 - 08 - 13
冷害是造成作物严重损失和不可逆转伤害的灾害之一。为避免产量损失,可利用高通量表型选择耐寒胁迫的作物品种。如今,无损光谱图像分析已成为一种有效方法,并已广泛应用于高通量表型分析中,反映出植物结构组成,生长发育过程中的生理,生化特性和特征。本研究利用卷积神经网络(CNN)模型提取可见-近红外范围的特征光谱估计玉米幼苗的冷害。文中以五个品种的冷处理玉米幼苗的高光谱图像为研究对象。光谱范围为450-885 nm。高斯低通滤波和Savitzky-Golay平滑方法结合一阶导数进行光谱数据的预处理。从每种玉米幼苗选定的感兴趣区域获取3600个像素样本用于CNN建模。CNN模型建立后,从高光谱图像中提取400个像素样本作为每个品种的测试集。最后,通过分析分类准确度和计算效率确定一个CNN模型。CNN检测到的不同类型的玉米幼苗的冷害水平分别为W22 (41.8 %),BxM (35%),...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(研发、售后)
          光华创业园科研楼二层东侧(销售、市场)
电话:010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

深圳办事处:

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

武汉办事处:

地址:武汉市洪山区民族大道124号龙安港汇城A座1108 手机:13910499761


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开