北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Technical
News 应用支持
摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,RPD为1.68。迁移后模型的预测精度、R2值、RMSE和RPD分别为0.72、6.71 g/kg和1.53。与模型直接迁移预测相比,采用基于四阶多项式和XG-Boost的土壤光谱校正模型,SOM预测结果的RMSE分别降低了57.90%和60.27%。 这种性能比较凸显了在区域尺度 SOM 预测中考虑土壤物理特性的优势。Figure 1. Framework of the proposed SOM estimation model.研究区域试验点1位于中国东北黑龙江省黑土耕地保护区,如图2所示,面积为1095 km2。该地区属温带大陆性季风气候,年降水量为450–650 mm,降水主要集中在6–9月,占全年降水量的80%。研究区地势南高北低,西高东低,大部分地区为堆积平原。该研究区是全球仅有的四个黑土区之一,耕层深厚,土壤肥沃,含腐殖质的土层厚度为25–80 cm,适合种植玉米、大豆等作物...
发布时间: 2024 - 06 - 11
浏览次数:21
植被冠层的光合特性是基于地球系统模型进程的重要参数,可用于理解全球碳循环。然而这些地球系统模型缺乏光合特性连续的时空信息,导致了很大的不确定性,无法解释碳的源和汇以及大气层与陆地生物圈的交换。此外,光合速率的准确表征对于重设光合作用途径以提高作物产量至关重要。选择新品种需要在给定环境中将基因型与表型联系起来,但尚未以高通量方式实现,这成为植物育种的主要瓶颈之一。为此,作为全球粮食安全问题解决方案的一部分,迫切需要光合特性高通量表征技术的进步,这对于深刻理解全球环境变化至关重要。基于此,作者研究了安装在移动平台上的高光谱成像相机是否能解决这些问题,重点研究三种主要方法-基于偏最小二乘法回归(PLSR)的反射光谱,光谱指数以及数值模型反演,以从11个烟草品种冠层高光谱反射率估算光合特性。结果表明,基于PLSR建立的反射光谱和光谱指数模型预测Vcmax和Jmax的R2为~0.8,高于数值反演的预测结果(R2为~0.6)。与反射光谱的PLSR相比,光谱指数的PLSR预测Vcmax(R2 = 0.84 ± 0.02, RMSE = 33.8 ± 2.2 μmol m−2 s−1)的结果更好,预测Jmax(R2 = 0.80 ± 0.03, RMSE = 22.6 ± 1.6 μmol m−2 s−1)的结果相似。...
发布时间: 2020 - 05 - 28
浏览次数:240
摘要:本研究旨在理解不同缺水胁迫下10个水稻基本型的表现。记录了不同胁迫水平下植物的相对含水量(RWC)以及在350-2500 nm范围内的高光谱数据。通过光谱指数,多元技术和神经网络技术确定最佳波段,并建立预测模型。建立了新的水敏感光谱指数,并就RWC评估了现有的水带光谱指数。这些基于指数的模型可以有效地预测RWC,R2值为0.73至0.94。在350-2500 nm范围内的所有可能组合中,使用比率光谱指数(RSI)和归一化光谱指数(NDSI)绘制等高线,并量化与RWC的相关性以确定最佳指数。光谱反射率数据(ASD Field Spec3 spectroradiometer测量)还用于建立偏最小二乘回归(PLSR),然后进行多元线性回归(MLR)和人工神经网络(ANN),支持向量机回归(SVR)和随机森林(RF)模型来计算植物RWC。在这些多元模型中,PLSR-MLR被认为是预测RWC的最佳模型,校正和验证的R2分别为0.98和0.97,预测的均方根误差(RMSEP)为5.06。结果表明,PLSR是鉴定作物缺水胁迫的可靠技术。尽管PLSR是可靠的技术,但如果将PLSR提取的最佳波段馈入MLR,则结果会得到显着改善。使用所有光谱反射带建立了ANN模型。建立的模型未取得令人满意的结果。因此,使用PLSR选择的最佳波段作为独立x变量开发了模型,发现PLSR-ANN模型比单独的ANN模型...
发布时间: 2020 - 05 - 25
浏览次数:197
土壤有机碳(SOC)源和汇之间的平衡会影响温室气体以及全球气候。SOC储量的微小变化会影响碳循环,并可能显著增加或降低大气中的碳浓度。土壤碳的变化受气候和土地利用的影响,并且在不同土壤中也会发生变化。为了更好地理解土壤有机碳的动力学及其驱动因子,作者收集了华北和东北地区1980年代和2000年代的数据,其中2000年代的样品利用ASD Fieldspec ProFR vis–NIR光谱仪进行了漫反射光谱的测定用于土壤碳的预测,并对各个时期土壤有机碳的空间变化进行了数字土壤制图。在1980年代,在30公里的方格中采集了585个土壤样品,并在2003年和2004年对该区域进行了重新采样(1062个样品)。该地区土地利用类型主要是农田,森林和草地。土地利用,地形因素,植被指数,可见近红外光谱和气候因素作为预测因子,使用随机森林预测土壤有机碳浓度及其时间变化。1985年平均土壤有机碳浓度为10.0 g kg-1,而2004年为12.5 g kg-1。在这两个时期中,土壤有机碳变化相似且从南到北增加。据估计土壤有机碳储量在1985年为1.68 Pg,在2004年为1.66 Pg,但是不同土地利用下土壤有机碳变化是不同的。在过去的20年中,平均气温升高,大面积森林和草原转化为农田。农田土壤有机碳增加了0.094 Pg(+9%),而森林和草地土壤有机碳分别损失了0.089 Pg(−25%)和0....
发布时间: 2020 - 05 - 15
浏览次数:79
6372117373571266866723166.pdf
发布时间: 2020 - 03 - 30
浏览次数:136
点击下载:广州市秋季气溶胶光学特性日变化.pdf
发布时间: 2020 - 02 - 24
浏览次数:137
ASD 地物光谱仪FieldSpec 4 技术文献:不同干旱条件下,夏玉米全生育期冠层吸收光合有效辐射比的高光谱遥感反演 冠层吸收光合有效辐射比(fAPAR)是植被生产力遥感模型的重要参数,但关于不同干旱条件下作物全生育期的fAPAR遥感反演研究仍未见报道。本研究利用2015年夏玉米5个灌水处理模拟试验的高光谱反射率和fAPAR观测资料,分析了不同干旱条件下夏玉米关键生育期fAPAR和高光谱反射率变化特征,探讨了fAPAR与反射率、一阶导数光谱反射率和植被指数的关系。 轻度水分胁迫和充分供水条件下,fAPAR较高;重度水分胁迫和重度持续干旱条件下,fAPAR较低。冠层可见光、近红外光和短波红外光区的反射率与fAPAR分别呈负相关、正相关和负相关关系。fAPAR与可见光和短波红外光区的383、680和1980 nm附近的反射率的相关性最强,相关系数均达-0.87。一阶导数光谱反射率与fAPAR相关性强且稳定的波段为580、720和1546 nm,相关系数分别为-0.91、0.89和0.88。9个常用植被指数与fAPAR呈线性或对数关系,其中,增强型植被指数、复归一化植被指数、土壤调节植被指数和修正的土壤调节植被指数与fAPAR的关系模型最好,决定系数(R2)均在0.88以上,平均相对误差分别为16.6%、16.6%、16.7%和16.2%;基于一阶导数光谱反射率与...
发布时间: 2020 - 02 - 07
浏览次数:116
M.K. Maid1*, R.R. Deshmukh21*Department of CS and IT, Dr. B. A. M. U, Aurangabad, India2Department of CS and IT, Dr. B. A. M. U, Aurangabad, India*Corresponding Author: mm915monali@gmail.com Available online at: www.ijcseonline.org Abstract— Remote Sensing has wide range of applications in many different fields. Remote Sensing has been found to be a valuable tool in evaluation, monitoring, and management of land, water and crop resources. The applications of remote sensing techniques in the field of agriculture are wide and varied ranging from crop identification, detection of diseas...
发布时间: 2019 - 03 - 19
浏览次数:256
本文旨在利用高光谱数据建立一个准确、可解释的植物病害识别模型。由真菌引起的大豆炭腐病是一种严重影响大豆产量的世界性病害。在383-1032 nm范围内,Resonon高光谱成像仪在240个不同的波长处捕获高光谱图像。针对大豆炭腐病,科学家建立了3D卷积分网络模型,模型分类精度为95.73%,并利用可视化显著图检验训练模型、敏感像素位置以及分类的特征敏感波段,发现:敏感特征波段为733 nm,这和常用的鉴别植物健康程度的特征波段范围(700-1000nm)是一致的。 实验:感染炭腐病的大豆:分别在第3、6、9、12和15天采集健康的和受感染的大豆茎秆样品,在测量病害程度之前,实时采集健康的和收到感染的茎秆的高光谱图像。测量仪器:美国Resonon高光谱成像仪,型号:Pika XC(包含安装支架、移动平台、操作软件和2个70w卤素灯)Pika XC性能:光谱通道数:240,波段范围,400-1000 nm,分辨率:2.5 nm。 平台系统如下图(a)所示:(a)    室内高光谱成像系统(b)    不同光谱波段的大豆茎秆样品高光谱图像(c)     大豆茎秆的内部和外部RGB图像的病害程度比较3D-CNN模型由两个连接的卷积分模型组成,其中,一个小的构架用于防止训练...
发布时间: 2018 - 10 - 09
浏览次数:682
DOI: 10.5846/stxb201803300694韩东,王浩舟,郑邦友,王锋. 基于无人机和决策树算法的榆树疏林草原植被类型划分和覆盖度生长季动态估计. 生态学报, 2018, 38(18):6655-6663 基于无人机和决策树算法的榆树疏林草原植被类型划分和覆盖度生长季动态估计 韩东1,王浩舟1,2,郑邦友3,王锋1,*1  中国林业科学院荒漠化研究所,北京   1000912  The Faculty of Forestry & Environmental Management, University of New Brunswick, Fredericton, NB E3B 5A3, Canada3  CSIRO Agriculture and Food, Queensland Biosciences Precinct 306 Carmody Road, St Lucia, 4067, QLD, Australia摘要:植被覆盖度是评估生态环境质量与植被生长的重要指标,也是全球众多陆面过程模型和生态系统模型中表达植被动态的重要参数。卫星遥感和地面测量是估算植被覆盖度的常见方法。然而,如何精确...
发布时间: 2018 - 09 - 29
浏览次数:162
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开