北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍

日期: 2024-04-26
浏览次数: 60
目录
1. 后处理方法介绍
1.1 Ustar阈值判断(主要针对夜间NEE)
1.2 数据插补
1.2.1 查表法插补(LUT法)
1.2.2 平均日变化曲线法(MDC法)
1.2.3 样本边缘分布采样法(MDS法)
1.3 数据拆分
2. REddyProc包处理数据格式介绍
2.1 输入需要处理数据的格式
2.2 输出处理完毕数据的格式
3. REddyProc包的R代码介绍
3.1 准备—R程序包安装、运行、目标数据导入和调整
3.2 数据后处理
3.2.1 Ustar阈值计算
3.2.2 数据插补
3.2.3 NEE拆分插补
3.2.4整合处理结果并输出数据
涡动通量数据处理分为在线处理(online-processing)和后处理(post-processing)。其中在线处理针对高频通量数据(e.g.10Hz data)通过一系列标准方法进行计算,最后得到带有质量评价的低频通量数据(e.g.half-hour data),后处理主要包括Ustar阈值估计、数据插补和碳通量(NEE)拆分(植被总生产力GPP和呼吸消耗Re)及其结果的可视化表达。
当夜间大气湍流运动较弱时,摩擦风速u∗降低,涡动相关系统测量碳通量NEE时会出现低估的现象,数据漂移值增多。通常需要判断出u∗阈值,剔除这些低于u∗阈值的NEE;对缺失的数据进行插补,有利于得到完整的时间序列并得到更长时间尺度(月或年)下的均值;NEE通过主流的模型方法进行拆分,以便进一步了解研究区NEE两大组分:(1)生态系统总生产力(或总初级生产力)(2)生态系统呼吸。REddyProc 程序包通过R语言平台实现了以上三个方面的数据后处理,以及对其计算结果实现基本可视化功能。
1. 后处理方法介绍
数据后处理所使用的通量数据是已经过异常值剔除后的数据,NEE拆分或可插补的数据包括碳通量(NEE,umolm-2s-1)、感热通量(sensible heat flux (H) Wm-2)、潜热通量(latent heat flux (LE) Wm-2)、摩擦风速(friction velocity (u∗) ms-1)、入射短波辐射(global radiation (Rg) Wm-2), 空气或土壤温度(air or soil temperature (Tair, Tsoil) ℃)和水汽压饱和差(vapor pressure deficit (VPD) hPa)或相对湿度(relative humidity (RH) %)。其中u∗、Rg、VPD、Tair和RH是NEE滤除、插补和拆分默认使用数据。
数据后处理主要流程包括(图 1):
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
●确定和滤除湍流发展较弱的时期下的NEE(计算u∗阈值)。
●插补缺失的小时数据。
●拆分碳通量小时数据,得到GPP和Reco。
图1 数据后处理流程,以某一站点数据为例
(Wutzler et al.(2018))
1.1
Ustar阈值判断(主要针对夜间NEE)
仪器所在高度处可以测量到下垫面全部碳通量(无平流损失),对应的最小u∗称为u∗阈值,u∗阈值通常出现在夜间(Rg<10 Wm-2)。由于下垫面粗糙度在不同时期(季节)发生变化,导致u∗阈值会产生季节变化。(the u∗ threshold is the minimum u∗ above which respiration reaches aplateau. This threshold is specific for each season of a site year.)。
当前REddyProc 包计算Ustar阈值方法主要有移动点法(the moving point method,MPT)和断点检测法(the breakpoint detection method,CPT),其中MPT较常用。
1.2
数据插补
Ustar阈值滤除NEE后,会有更多的NEE缺失数据,需要插补。
1.2.1 查表法插补(LUT法)
在REddyProc包的查表法中(look-up table (LUT)),所有通量数据以特定的时间窗口内的相似气象条件为依据进行分类并计算平均值,最后得到可供参照的速查表。缺失的数据可利用同时间序列中已知的气象数据与速查表匹配,对应的通量数据即为所缺失的数据。
1.2.2 平均日变化曲线法(MDC法)
该方法可在其他气象数据缺失条件下进行通量数据插补。假设植物晚上只进行呼吸作用,白天发生光合和呼吸作用,且NEE具有较为规律的日变化特征。则缺失的数据可根据临近天同时刻(或前后一小时)已知的通量数据进行插补(mean diurnal course (MDC))。
1.2.3 样本边缘分布采样法(MDS法)
边缘分布采样法(marginal distribution sampling (MDS))结合了以上LUT和MDC两种方法,根据通量数据与气象因子之间的关系(covariation)以及通量数据在时间上的自相关进行插补。MDS可针对较大缺失范围的NEE和LE数据插补,该方法目前最受欢迎。
利用Rg, Tair和 VPD三种气象数据,(1)如果三个气象数据皆未缺失, 使用LUT 方法,三个气象因子默认边际条件(default margins)为50 Wm−2, 2.5 ◦C和5.0 hPa;(2)Tair 或VPD 缺失, 则只利用 Rg;(3) 如果三种气象数据都缺失,使用 MDC方法。另外,很多站点没有Rg的观测数据,可用光合有效辐射par代替,并设置par的边际条件(可尝试使用100-200 μmol m-2 s-1)
1.3
数据拆分
NEE、Reco(↑)和GPP(↓)三者关系为NEE = Reco– GPP,当前NEE拆分为Reco 和GPP主要方法有利用夜间NEE数据拆分和利用白天NEE数据拆分两种。当前夜间NEE数据拆分方法最常用。
夜间NEE数据拆分方法是假设植被呼吸Reco只与Tair变化有关,且夜间植被只进行呼吸作用,因此可以通过夜间NEE对Tair的响应变化曲线推出白天植被的呼吸Reco变化,最后根据以上关系式求出植被总生产力GPP。
白天NEE数据拆分方法是将白天NEE和总辐射的关系假设为Rg和VPD对GPP的影响以及Tair对Reco的影响的综合。
2. REddyProc包处理数据格式介绍
本节图片来源:
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWebDataFormat
注意虽然REddyProc包是基于该网页在线工具所开发的,但是二者的算法还有一些区别,详情参见Wutzler et al.(2018)。
2.1
输入需要处理数据的格式
输入数据格式如图2所示,输入文件类型为“文本文件(制表符分隔)(*.txt)”
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
图2 数据输入类型及格式
2.2
输出处理完毕数据的格式
输出的数据主要包括数据插补结果(图 3),u∗阈值估计结果(图 4)和NEE拆分为GPP和Reco的结果(图 5)。
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
图3 数据插补数据结果格式
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
图4 Ustar阈值数据结果格式
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
图5 NEE数据拆分结果格式
3. REddyProc包的R代码介绍
白色字为代码,“###”后仅为代码介绍的文本,无其他功能。“#”为跳过无需运行的代码。
3.1
准备—R程序包安装、运行、目标数据导入和调整
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
3.2
数据后处理
按照Ustar阈值计算,数据插补和NEE拆分三个流程分别进行处理。
3.2.1 Ustar阈值计算
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
3.2.2 数据插补
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
3.2.3 NEE拆分
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
3.2.4 整合处理结果并输出数据
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍


News / 相关新闻 More
2024 - 06 - 11
摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,...
2024 - 05 - 20
北京,这座拥有千年历史的城市,见证了无数历史的变迁和现代文明的飞跃。然而,随之而来的是空气质量问题,尤其是由机动车尾气排放引发的大气污染。据相关研究显示,机动车尾气中含有大量的有害物质,包括一氧化碳、氮氧化物、挥发性有机化合物以及细颗粒物等,这些污染物不仅对人体健康构成威胁,还会导致城市雾霾的形成,影响城市的视觉美感和居民的生活质量。在众多污染物中,氨气作为一种典型的碱性气体,其来源多样,包括农业活动、工业生产、生活垃圾处理等。在北京市城区车辆排放是否是氨气的主要来源?据此,来自中国科学院大气物理研究所的研究团队进行了相关研究。北京城区NH3排放源-机动车尾气背景介绍氨气是大气中重要的碱性气体,在中和酸性气体,形成二次气溶胶方面发挥着重要作用。NH3在大气中滞留时间短,因此NH3浓度日变化显著。一般特征为在早上大约07:00~10:00,NH3浓度到达峰值。然而以前的研究局限于单一季节,无...
2024 - 05 - 17
菱透浮萍绿锦池,夏莺千啭弄蔷薇透过浮萍,诗人的眼里看到的是其和水中菱叶相映成趣的景象,是夏日池塘的勃勃生机。而在科研学者的眼中,看到的是天南星目浮萍科的水生植物,是潜藏在水稻种植中的双刃剑。营养物质的争夺?自然光照的遮挡?生存空间的占据?在一片生机之下,浮萍和水稻之间塑造着另一番景象..由于气候变暖/或灌溉水富营养化的影响,稻田中的浮萍(DGP)大幅增加。本研究考虑到生态因素、光合能力、光谱变化和植物生长等因素,对三个代表性水稻品种进行了田间试验,以确定DGP对水稻产量的影响。结果表明,DGP显著降低pH值0.6,日水温降低0.6℃,水稻抽穗期提前1.6天,并平均增加了叶片的SPAD和光合速率分别为10.8%和14.4%。DGP还显着提高了RARSc、MTCI、GCI、NDVI705、CI、CIrededge、mND705、SR705、GM等多种植被指数的数值,并且水稻冠层反射光谱的一阶导...
2024 - 05 - 08
在城市污水处理与农村生活废弃物管理中,化粪池作为一种常见的粪便处理设施,承担着重要角色。然而,化粪池在分解过程中会产生包括氨气在内的恶臭气体,这些气体不仅对周围环境造成异味污染,还可能对人体健康构成威胁。以下论文中,来自上海市环境科学研究院的研究团进行了化粪池的相关研究,以降低化粪池氨气排放对环境的负面影响,促进生态平衡和可持续发展,为相关领域的政策制定和技术改进提供理论依据和实践指导。中国城市潜在NH3排放源-化粪池背景介绍在中国高度污染的城市大气中,大气新粒子形成可能是由于硫酸和胺的成核机制,而目前尚不清楚为什么中国的城市大气中富含胺。在城市中,尽管抽水马桶的普及率接近100%,但人类排泄物大多储存在建筑物下面的化粪池中,而不是直接运往污水处理厂。化粪池中大量NH3是微生物分解的产物,可以通过连接屋顶的塑料管释放到大气中。鉴于胺与氨是共同排放的,有理由认为人类排泄物也可能是中国城市中胺...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开