北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用

日期: 2022-01-24
浏览次数: 55

Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用

改进积雪密度的估计是目前雪研究的一个关键问题。表征密度时空变异性对于水当量的估算、水力发电和自然灾害(雪崩洪水等)的评估至关重要。高光谱成像是一种监测和估计其物理特性的有前途且可靠的工具。事实上,雪的光谱反射率在一定程度上受其物理特性变化的控制,尤其是在光谱的近红外(NIR)部分。为此,已经设计了几种模型根据光谱信息估算积雪密度。然而,还没有一个实现满意的结果。主要困难之一是积雪密度和光谱反射率之间的关系是非双射的(满射的)。事实上,几个反射振幅与相同的密度相关,反之亦然,所以密度和光谱反射率之间的相关性可能非常弱。

基于此,为了解决该问题,本研究中提出了基于光谱数据的积雪密度估计混合模型。主要研究目标是利用高光谱NIR成像(PIKA NIR,RESONON Company)(900-1700 nm)以5.5 nm的光谱分辨率测试混合模型(HM)估计季节性积雪密度的性能。混合模型结合了一个分类器和3个与密度类别相关联的特定估算量(弱到中度变质雪(WMM),中度到高度变质雪(MHM)和高度到极高度变质雪(HVM))。利用2018(1.19-3.27)、2019(1.10-4.3)和2020(1.29-3.10)年冬季在加拿大魁北克国立科学研究院(INRS)的科技园内(46°47′43.22″北纬,-71°18′10″西经)收集的数据集校准和验证了HM。混合模型在两个水平进行评估:利用留一法交叉验证(LOOCV)算法和系统划分验证技术(SSV)。LOOCV技术用于评估3个特定估算量,SSV数据用于评估HM性能。4个统计评估指标(决定系数(R2),均方根误差(RMSE),偏差(BIAS)和纳什系数(NASH))用于评估模型的性能。

 Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用

加拿大魁北克采样区地理位置。

Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用

高光谱成像系统。

Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用

(a)雪样垂直剖面的高光谱采集;(b)积雪垂直地层空间转换的假彩色RGB图像。

【结果】

 Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用

3种积雪类别的NIR光谱反射率。

 Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用

混合模型估计特定估算量的结果;(a)WMM,(b)MHM,(c)HVM。

Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用

混合模型特定估算量的LOOCV结果;(a)WMM,(b)MHM,(c)HVM。

Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用

利用SSV数据估计区域混合模型。

【结论】

基于多元逐步回归的校准步骤结果表明,3种类型积雪均对不同NIR光谱区域敏感,局限于短波长和长波长。WMM对1265 nm和941 nm的波长敏感,MJM对1617 nm和941 nm的波长敏感,HVN对1424 nm和1188 nm的波长敏感。LOOCV技术强调了所有类别的特定估算量都趋向于略微高估积雪密度(BIAS<0.1 kg·m-3)。当用SSV数据挑战HM时,模型结果令人满意,R2=Nash=0.93,积雪密度略有低估(BIAS=1.03 kg·m-3)。

本研究的目的是开发一种基于积雪光学特性地方法,结合传统密度测量方法以减轻野外作业。利用HM估算积雪密度的关键步骤是最终特定估算量的选择。事实上,分类算法(如CART)是局部且不稳定的。这种不稳定性会显著影响利用HM的特定估算量的密度的准确性。换句话说,对于利用HM的理想建模过程,要建模的样品必须很好地分类,以便使用与该类对应的特定估算量来进行最优密度估计。否则,一个错误的特定估算量将会被选择,从而影响估算精度。例如,对于一个581 kg·m-3的测量密度(分类为HVM),当分别利用HVM,MHM和WMM特定估算量估算时,相对误差变化了5%、39%和75%。另一方面,该方法的另一阻碍是野外和恢复的高光谱图像上均匀积雪层的正确选择。因此,需要进行额外的野外工作来收集更多的数据以克服这一弱点并允许适当的野外实施。HM提供了一种改进工具来监测季节性积雪的演变,即使对于低到中等的积雪密度,其性能也令人满意。该研究结果是开发一种在野外连续监测积雪密度剖面的有效方法的重要一步。

 

请点击如下链接,阅读原文:

Resonon | PIKA NIR高光谱成像在估算积雪密度上的应用PIKA NIR高光谱成像在估算积雪密度上的应用


News / 相关新闻 More
2024 - 06 - 11
摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,...
2024 - 05 - 20
北京,这座拥有千年历史的城市,见证了无数历史的变迁和现代文明的飞跃。然而,随之而来的是空气质量问题,尤其是由机动车尾气排放引发的大气污染。据相关研究显示,机动车尾气中含有大量的有害物质,包括一氧化碳、氮氧化物、挥发性有机化合物以及细颗粒物等,这些污染物不仅对人体健康构成威胁,还会导致城市雾霾的形成,影响城市的视觉美感和居民的生活质量。在众多污染物中,氨气作为一种典型的碱性气体,其来源多样,包括农业活动、工业生产、生活垃圾处理等。在北京市城区车辆排放是否是氨气的主要来源?据此,来自中国科学院大气物理研究所的研究团队进行了相关研究。北京城区NH3排放源-机动车尾气背景介绍氨气是大气中重要的碱性气体,在中和酸性气体,形成二次气溶胶方面发挥着重要作用。NH3在大气中滞留时间短,因此NH3浓度日变化显著。一般特征为在早上大约07:00~10:00,NH3浓度到达峰值。然而以前的研究局限于单一季节,无...
2024 - 05 - 17
菱透浮萍绿锦池,夏莺千啭弄蔷薇透过浮萍,诗人的眼里看到的是其和水中菱叶相映成趣的景象,是夏日池塘的勃勃生机。而在科研学者的眼中,看到的是天南星目浮萍科的水生植物,是潜藏在水稻种植中的双刃剑。营养物质的争夺?自然光照的遮挡?生存空间的占据?在一片生机之下,浮萍和水稻之间塑造着另一番景象..由于气候变暖/或灌溉水富营养化的影响,稻田中的浮萍(DGP)大幅增加。本研究考虑到生态因素、光合能力、光谱变化和植物生长等因素,对三个代表性水稻品种进行了田间试验,以确定DGP对水稻产量的影响。结果表明,DGP显著降低pH值0.6,日水温降低0.6℃,水稻抽穗期提前1.6天,并平均增加了叶片的SPAD和光合速率分别为10.8%和14.4%。DGP还显着提高了RARSc、MTCI、GCI、NDVI705、CI、CIrededge、mND705、SR705、GM等多种植被指数的数值,并且水稻冠层反射光谱的一阶导...
2024 - 05 - 08
在城市污水处理与农村生活废弃物管理中,化粪池作为一种常见的粪便处理设施,承担着重要角色。然而,化粪池在分解过程中会产生包括氨气在内的恶臭气体,这些气体不仅对周围环境造成异味污染,还可能对人体健康构成威胁。以下论文中,来自上海市环境科学研究院的研究团进行了化粪池的相关研究,以降低化粪池氨气排放对环境的负面影响,促进生态平衡和可持续发展,为相关领域的政策制定和技术改进提供理论依据和实践指导。中国城市潜在NH3排放源-化粪池背景介绍在中国高度污染的城市大气中,大气新粒子形成可能是由于硫酸和胺的成核机制,而目前尚不清楚为什么中国的城市大气中富含胺。在城市中,尽管抽水马桶的普及率接近100%,但人类排泄物大多储存在建筑物下面的化粪池中,而不是直接运往污水处理厂。化粪池中大量NH3是微生物分解的产物,可以通过连接屋顶的塑料管释放到大气中。鉴于胺与氨是共同排放的,有理由认为人类排泄物也可能是中国城市中胺...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开