北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
新闻资讯 News
News 新闻详情

治霾先治氨

日期: 2018-10-11
浏览次数: 136

来源:《中国科学报》 (2018-10-09 第3版 国际)

作者:卜叶

相关论文信息:DOI:10.1126/science.aav3862

 

治霾先治氨

管理农场的氨源,比如马里兰州的这堆鸡粪,可能是限制排放的关键

图片来源:EDWIN REMSBERG/ALAMY STOCK PHOTO

 

雾霾的成分及它们在大气中的相互作用一直是个谜。美国的一项研究发现,雾霾成分中大约3/4是硝酸铵,其中的氨通常来自使用氨基液体肥料的农场或产生大量动物粪便的农场,该文章近日发表在《科学》杂志上。

普林斯顿大学的环境工程师Mark Zondlo说:“氨是可怕的,它确实是大气中最糟糕的气体之一。”

氨一旦进入大气层,就会与其他化合物结合,产生直径小于2.5微米的微小颗粒,高浓度的氨似乎在加剧雾霾,而这些微小颗粒滞留在人体肺部和血液中,会导致疾病或过早死亡。

长久以来,人类对这种无色、气味刺鼻的气体在致命空气污染中所扮演的角色知之甚少。从某种程度是因为追踪它非常困难。氨气总是急切地与其他化合物结合,导致这种气体的寿命很短,监测仪器很难捕捉到它们。

事情并未因此戛然而止。近年来,雾霾导致美国盐湖城地区居民肺炎和哮喘发作的问题日益严重,学校暂停户外活动,甚至健康的居民都抱怨喉咙发痒和咳嗽,有越来越大的压力迫使美国政府解决雾霾问题。

去年,来自6所大学、几个州和联邦机构的研究人员开展了一项前所未有的研究,以更好地了解盐湖城雾霾的确切化学成分和污染源。外界评论,在研究氨排放方面,很少有像2017年冬天盐湖城地区那样彻底的行动。

针对盐湖城地区的研究发现,雾霾中的氨很大比例来自农业和畜牧业,包括以氨为基础的肥料和动物粪便,此外,森林大火、汽车和工业也有贡献。

中国是全球氨排放的热点地区之一,中国科学院大气物理研究所大气分中心主任王跃思接受《中国科学报》记者采访时表示,氨排放问题引起关注,主要是因为它在雾霾形成过程中扮演着非常关键的角色。在区域尺度的氨气排放清单中,农牧业的贡献较大,交通和工业过程氨气排放较小。但在城市地区,汽车排放的氨气对雾霾形成的贡献可能比人们之前想象的要大得多。尤其在秋冬季,雾霾形成多与静稳天气条件有关,局地排放的氨气在城市内累积,使得雾霾中来自非农业源的氨气比例上升。

自1990年以来,欧洲国家采取了多种策略,包括限制化肥的使用和覆盖粪堆、控制乳制品的经营,将农业、畜牧业的总排放量减少了24%。但接下来,横亘在尚未把限制氨排放作为优先事项的国家,比如中国、美国面前控制氨排放问题的难度将进一步加大。王跃思表示,控制氨排放的技术相对成熟,难点在于落地和监管。

北京市环境保护科学研究院生态保护与环境规划研究所副所长韩玉花告诉《中国科学报》记者,近年来北京地区通过农业产业结构调整、降低化肥施用强度、关停或治理禁养区内的规模化养殖场等措施,实现了北京市农业氨排放量的削减;但整体看,目前,国内氨排放治理主要通过减少化肥施用、提高养殖场畜禽粪污的规范化处置水平等方式实现协同减排,农业氨排放控制技术尚处于摸索示范阶段。

有一点是确定的,如果盐湖城和其他地方的研究证据证明氨已成为颗粒物污染的一个重要驱动因素,那么可能会加快监管机构采取行动的步伐。王跃思表示,减少氨排放需要长期、分层次进行,但首先要行动起来,把已经确定的氨排放源控制好,比如农业施肥和畜牧养殖。还要开展详细的来源解析,为精准实施控制提供科技支撑。

此外,已有研究证明,氨作为PM2.5形成的重要前体物,需要与排入大气中的硫酸盐、硝酸盐等物质共同削减才能实现更加明显的减排效应。韩玉花表示,我国一些城市为控制农业氨排放已对种植业和养殖业提出要求,但从欧盟和美国的氨排放控制历程来看,农业氨排放控制将是一个长期复杂的过程。

 

相关论文链接:

Ammonia, a poorly understood smog ingredient, could be key to limiting deadly pollution

News / 相关新闻 More
2023 - 03 - 23
2月 16 日至 17 日,中国通量网(ChinaFLUX)2022 年学术年会暨十周年战略发展研讨会在北京中国科学院地理科学与资源研究所顺利举办。本次大会由中国通量观测研究联盟(ChinaFLUx)主办,中国科学院生态系统网络观测与模拟重点实验室承办,采取线上和线下相结合的方式,同步召开。本次会议的主题为“把脉生态碳汇,服务绿色双碳”,近千名学者和研究生线上或线下参会。 此次会议邀请了中国科学院生态环境研究中心傅伯杰院士、天津大学刘丛强院士、加拿大多伦多大学陈镜明院士、北京大学朴世龙院士、中国科学院大学王艳芬教授、中国科学院沈阳应用生态研究所朱教君研究员、中国科学院大气物理研究所郑循华研究员、美国加州大学伯克利分校 Trevor Keenan 教授、日本千叶大学 Kazuhito lchi 教授中国气象科学研究院周广胜研究员、美国康奈尔大学骆亦其教授、美国密歇根州立大学陈吉泉教...
2023 - 03 - 13
2023年高光谱测量技术及应用学术交流会会议时间:2023年4月12日参会方式:北京承办单位:主办方:中国农业科学院作物科学研究所北京理加联合科技有限公司协办方:英国ASD公司美国Resonon公司01 背景进入21世纪以来,高光谱遥感已成为当前遥感研究的前沿领域。与传统的多光谱遥感相比,高光谱遥感可以检测到更多的波段数量和更窄的波段宽度,从而使其可以提供更丰富的数据集,并检测到多光谱技术不可见的光谱信息。目前高光谱遥感在农业遥感、环境遥感、林业监测、土壤遥感、水色遥感、大气科学、材料研究等众多领域的研究中均具有广泛的应用。为加强广大科研工作者对高光谱遥感技术及研究进展的了解,促进不同学科领域学者间的交流,拓宽高光谱遥感技术在不同研究领域的应用和发展。中国农业科学院作物科学研究所联合北京理加联合科技有限公司将于2023年4月12日在北京(线下)召开“2023年高光谱测量技术及应用学术交流会...
2023 - 03 - 01
01 背景通量观测是定量描述土壤-植被-大气间物质循环和能量交换过程的基础。涡度相关技术作为直接测量植被冠层与大气间能量与物质交换通量的技术手段,已经逐步发展成为国际通用的通量观测标准方法。随着涡度相关技术在全球碳水循环研究中的广泛应用,长期连续的通量观测正在为准确评价生态系统碳固持能力、水分和能量平衡状况、生态系统对全球气候变化的反馈作用、区域和全球尺度模型的优化与验证、极端事件对生态系统结构与功能影响等方面的研究提供重要数据支撑和机制理解途径。兰州大学泛第三极环境中心立足第三极,联动南北极,研究三极极端环境多圈层物质与能量循环过程及其与气候环境变化的耦合机制,揭示全球变化对生态系统关键过程、生态安全和人类健康的影响,服务国家重大战略决策和经济社会可持续发展。涡动相关是陆地生态系统下垫面碳水通量研究的主要技术,实际应用中需要专业的理论基础,理想数据获取需要丰富的实践经验。为不断提升野外通...
2023 - 01 - 12
一直以来,南极洲不仅是冒险者的目的地,也是众多科研人员关注的地方。远离了城市的喧嚣,这个地区一般没有严重的大气污染,适合气象变化的研究。科研机构对于气溶胶测量仪有着严格的要求。凭借着Palas®气溶胶测量经验,Palas® 研究人员Ann-Kathrin Goßmann女士随着Palas® Cloud Droplet Analyzer云滴分析仪一路向南,现已到达南极,助力芬兰气象研究所(FMI)进行长期的气象研究,共同守护地球生态家园。芬兰气象研究所(FMI)是欧洲主要的气象研究机构, 对欧洲以及世界气象研究有着深入的探索。鉴于南极洲的空气污染较少,因此气象研究所可以在这里研究气候变化,气候模型的创建以及回答有关大气变暖和变冷之间相互作用的相关主题。南极洲Palas®守护南极气象变化研究Palas® ...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开