北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

日期: 2020-07-09
浏览次数: 103

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

本文旨在利用高光谱数据建立一个准确、可解释的植物病害识别模型。由真菌引起的大豆炭腐病是一种严重影响大豆产量的世界性病害。在383-1032 nm范围内,Resonon高光谱成像仪在240个不同的波长处捕获高光谱图像。针对大豆炭腐病,科学家建立了3D卷积分网络模型,模型分类精度为95.73%,并利用可视化显著图检验训练模型、敏感像素位置以及分类的特征敏感波段,发现:敏感特征波段为733 nm,这和常用的鉴别植物健康程度的特征波段范围(700-1000nm)是一致的。

【试验方法】

感染炭腐病的大豆:分别在第3691215天采集健康的和受感染的大豆茎秆样品,在测量病害程度之前,实时采集健康的和收到感染的茎秆的高光谱图像。

测量仪器:美国Resonon高光谱成像仪,型号:Pika XC (包含安装支架、移动平台、操作软件和270 w卤素灯)。

Pika XC性能:光谱通道数:240;波段范围400-1000 nm;分辨率:2.5 nm


植物病害的高光谱图像解译识别:3D-CNN与显著图模型

a)室内高光谱成像系统

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

(b)不同光谱波段的大豆茎秆样品高光谱图像 (c)大豆茎秆内外部RGB图像病害程度比较

3D-CNN模型由两个连接的卷积分模型组成,其中,一个小的构架用于防止训练模型过饱和。2个图层(3*3mm空间维度,16个波段的光谱维度)作为第一个卷积分分层,4个3*3*16的图层作为第二个卷积分层,修正线性输入模型作为输出层。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

【结果分析】

1.  539个测试图像用于3d-cnn模型的精度评估。

如表1所示:模型分类准确为95.73%0.92的分类精度也体现了不同病害阶段的普适性。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

2.  可视化显著图评价

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

我们可视化了用显著图分类出来的部分图像, 最大分类得分的输入图像用于判别敏感像素位置。图三为感染病害和健康图像的显著图。每个像素的级别大小用于评价其在分类过程中的重要性。受感染茎秆图像的显著图比图像中严重感染区域(红棕色)对应的位置具有更高的数值。这表明,严重感染的图像区域包含最敏感的像素位置,可以预测受感染分数。无论是健康图像还是感染图像,显著图高值都集中在茎的中部区域。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型


测试图像的直方图数据,代表了每个波长最大显著图的图像像元百分比C*=130 (733 nm)

1)在测试数据中,近红外区的波长733 nm (C*=130)是所有波长中最敏感的;

2)在703 ~ 744 nm的光谱范围内,15个波长在测试图像的像素位置中占33%,是梯度值的最大值;

3)受感染样本的可见光谱波长(400-700 nm)比健康样本更敏感。

【结果分析】

数据结果证明了3D-CDD模型可以有效地学习高维的高光谱数据,应用于大豆炭腐病鉴别领域。从生理学机理角度,可视化显著图解释了高光谱特征波段在分类中的重要性,使模型更具有说服力。因此,我们对于该模型更加自信,在未来,基于鲁棒可解释机制的波段选择将有助于高光谱数据的降维,也将有助于设计高通量表型分析的多光谱摄成像系统。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型.pdf


News / 相关新闻 More
2022 - 06 - 27
作物收获指数(HI)是评价作物产量和栽培效果的重要生物学参数,是进一步提高作物产量的重要决定因素。对作物育种、作物生长模拟、精准农业作物管理、作物产量估算及其它方面的应用研究具有重要意义。近年来,遥感凭借其在速度、精度和覆盖范围等方面的优势已逐渐成为获取大尺度作物HI的有效技术手段。而无人机(UAV)遥感技术也迅速发展,成为农业遥感监测的新手段。目前,UAV遥感传感器主要包括数码相机、多光谱相机和高光谱相机。其中,高光谱相机具有较多的波段,可以获取与作物生长状况密切相关的波段信息,可以为作物动态生长监测提供丰富的信息源,并可靠收集作物HI动态变化信息。然而,目前利用UAV高光谱遥感估算作物HI并无相关报道。基于此,在所附文章中,来自中国农业科学研究院的一组研究团队以冬小麦为研究对象,充分考虑其开花期至成熟期生物量和灌浆过程的变化以获取作物动态HI(D-HI)的空间信息。动态fG(D-fG)...
2022 - 06 - 20
位于青藏高原东北部的青海湖,拥有着丰富的自然景观,既优美壮丽又独具特色。然而,在气候变化和人类过度开垦畜牧等因素的影响下,青海湖的环境逐渐恶化,生态遭到破坏,沙漠化面积也日益扩大。据统计,青海湖周边地区现有沙化土地170.7万亩、占区域土地总面积的11.7%。在植被恢复的过程中,青海湖地区的典型固沙植物沙蒿、沙棘和乌柳等对土壤养分及土壤有机质的提高发挥了较大的作用,其中自然植被沙蒿对土壤养分的改良效果最明显。沙蒿 (学名:Artemisia desertorum)是菊科蒿属多年生半灌木状植物,天然生长在沙漠地区,分布甚广。在我国主要分布在黑龙江、内蒙古、陕西、宁夏、甘肃、青海、新疆、四川、西藏等地,多生长于草原、草甸、森林草原、高山草原、荒坡、砾质坡地、干河谷、河岸边、林缘及路旁等。沙蒿枝条匍匐生长,有利于防风阻沙,具有适应性强、耐干早、抗风蚀、喜沙埋、生长快、固沙作用强等特点,为固沙先锋...
2022 - 06 - 10
土壤是重要的自然资源,地球上95%的食物来源于土壤,土壤保存了至少四分之一的全球生物多样性,不仅是粮食安全、水安全和更广泛的生态系统安全的基础,更是为人类提供多种服务、帮助抵御和适应气候变化的重要因素。由土壤组成造成的胁迫,例如盐、重金属和养分亏缺是作物减产的主要原因。作物土壤耐逆性是一种复杂性状,涉及植物形态、代谢和基因调控网络等多种遗传和非遗传因素的调控。传统的作物表型研究通常在田间进行,费事费力、劳动密集、低通量、且受研究人员无法控制的自然环境因素的影响。在此情形下,难以获得高精度的表型数据以满足表型组学的研究需求。在过去几十年,已经开发了几种HTP(高通量表型)平台在现场或可控条件下使用,但其运维成本极高。此外,作物表型相关研究通常只关注植物地上部分,而对根系形态数据的获取有限。然而,根系是植物吸收水分和养分的主要途径,也是碳水化合物的储存器官和土壤胁迫的直接感知器官。因此,根系表...
2022 - 06 - 07
颗粒物,又称尘,是气溶胶体系中均匀分散的各种固体或液体微粒。空气中的气溶胶也是COVID-19的主要传播途径之一。借助准确的粒径分析可得到准确的监测数据,Palas®凭借先进的气溶胶测量技术和空气粒子测量解决方案,为计量院提供了SMPS扫描电迁移率粒径谱仪、 Promo®气溶胶粒径谱仪,以及气溶胶稀释系统等监测仪器。Palas®以其稳定的监测数据结果、宽泛的粒径范围,为计量院的检定业务和相关研究提供助力Palas®专业监测,值得信赖的选择计量院的颗粒物实验室负责对颗粒物监测仪、尘埃粒子计数器、凝聚核计数器CPC、气溶胶粒径谱仪开展计量标准、量值溯源。同时也开展对过滤材料、过滤器和空气净化器的检测工作。如何应对众多的计量和校准任务?计量院已选择多款Palas®作为他们的得力助手。目前COVID-19主要的传播途径之一是通过空气中的气溶胶进行传...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开