北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3

日期: 2016-03-15
浏览次数: 109

J.B. Leen, G. Sornsen, R. Provencal, K. Owen, M. Gupta, D. Baer; ABB – Los Gatos Research

摘要

      基于最新的光腔增强型激光吸收技术—OA-ICOS(离轴积分腔输出光谱技术),美国能源部应用两种不同商业气体分析仪测量NH3
      分析仪#1(型号:914-0012),搭载于美国能源部在Yakima山谷Gulfstream-1研究飞机上,采用中红外量子级联激光器测量NH3。通过调节高分辨率吸收光谱的激光波长振动带近9.7um,测量NH3。在宽动态范围(0-101ppb)内获得了线性度:响应速率(1 / e)8 Hz,精度±0.09ppb(1σ,1秒)。一共执行两次飞行研究:飞行# 1,分析器在低风平稳大气条件下,采用高垂直分辨率和空间分辨率用来确定奶牛场牲畜排泄物特征。飞行# 2,分析仪在有风条件下捕获到动物粪便特征。
      分析仪# 2(型号:911-0016),采用近红外二极管激光测定空气中的氨。通过调节高分辨率吸收光谱激光波长接近1.52um的NH3结合带进行测量。线性度在宽动态范围(0-0.1ppm)内获得:响应速率(T90-10, 10-90)分别为<8秒和<9秒,精度±0.3ppb(10秒1σ)±0.8ppb(1秒1σ)。通过带水气/不带水气测量得到的两次结果,来量化仪器的精度、准度、漂移率、动态范围和水气交叉敏感度。

分析仪# 1(型号:914-0012):快速响应(8Hz),高精度(±0.09ppb,1σ/秒)

机载测量
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3
      仪器搭载美国能源部飞机Gulfstream-1 (G-1),在华盛顿Yakima山谷上空对流层飞行测量可行性被证实 。在明显不同的大气条件下,两次飞行,分别对当地奶牛饲养场NH3特征执行了检测。
      第一次飞行(2012年5月24日),在低风稳定大气条件下,从630米,1200米和1820米三个海拔高度下横向穿越山谷。
      第二次飞行(2012年5月25日),在持续东北偏北风条件下,从670米和1270米两个海拔高度处测量。在大型饲养场测量到NH3混合比为低至0.75 ppb,高至100 ppb。
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3
      飞行测量:WA, Yakima山谷NH3摩尔数据:(a)2012年5月24日(b)2012年5月25日,红色表示飞行测量高度。5月24日,平稳大气条件NH3羽流延伸范围广。5月25日多风的条件下NH3羽流受到极大限制。插图显示低噪声(a)和高频反应(b)
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3
      NH3 VS 高度(左图、中图):(a) 2012月5月24日(b)2012年5月25日。红圈为每个穿越高度平均± 1σNH3的浓度。NH3浓度在有风条件下要低得多(2012,5.25)。
飞行测量数据(右图):2012年5月25日(a)Yakima山谷飞行测量区域,NH3混合比(b)1820米处(c)1200米(d)630米。一股强大分离的NH3羽流在山谷饲养场上方清晰可见。(e)空气中高NH3水平与饲养场有明显关联性。 
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3
(左图)线性:使用零气稀释的渗透管测量    

(右图)精度:0-078ppb,1σ1HZ,使用含18ppb NH3的压缩空气测量 

时间响应
      因氨分子的粘滞性,氨测量快速响应较困难。LGR光腔涂层的湿润表面和较大的气体流速可减轻该影响,保证仪器的快速响应速率。
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3
      时间响应:两台仪器测量NH3浓度阶跃变化的响应时间,阶跃变化是由小浓度NH3压缩空气(30 psi)送回电磁阀实现的。
(a)仪器优化涡通量至30 SLPM流量。
(b)仪器优化机载测量至6 SLPM流量。

分析仪# 2(型号911-0016):快速(T90-10,10-90< 9 秒), 高精度(±0.3 ppb, 1σ/10秒)
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3
      在3ppm NH3 (w/ 1.2% H2O)的带水气环境与(w/o NH3)不带水气环境间进行交换,记录HN3测量反应的时间。2.4升/分泵速下测得T90-10及T10-90时间分别为9秒和8秒。记录数据:红色为1秒/点;黑色为10秒的平均水平。
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3
      自然大气背景下,已知的NH3恒定流速,测量NH3的精度。测得1σ精度为 < 0.3 ppb and < 0.1 ppb时间分别为10秒和100秒。Allan方差曲线图图示:测量结果(红点)参数(蓝色正方形)。
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3
      描述NH3渗透流线性,调节与渗透炉连接的零气流速,得到一系列梯度的NH3标气。 
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH3
      为了监测水气浓度变化对NH3测量的影响,将一个零气流与不同量水气反复混合,没有观测到显著的变化, 这说明,NH3测量对水气浓度变化不敏感。

阅读原文:

Next-generation_analyzers_for_am monia_measurements_ased_on_
应用基于光腔增强型激光吸收光谱技术的下一代分析仪测量NH39a0b68c19c090b2793ee3270fecfcf8a.pdf (7.67 MB)


News / 相关新闻 More
2022 - 01 - 24
改进积雪密度的估计是目前雪研究的一个关键问题。表征密度时空变异性对于水当量的估算、水力发电和自然灾害(雪崩洪水等)的评估至关重要。高光谱成像是一种监测和估计其物理特性的有前途且可靠的工具。事实上,雪的光谱反射率在一定程度上受其物理特性变化的控制,尤其是在光谱的近红外(NIR)部分。为此,已经设计了几种模型根据光谱信息估算积雪密度。然而,还没有一个实现满意的结果。主要困难之一是积雪密度和光谱反射率之间的关系是非双射的(满射的)。事实上,几个反射振幅与相同的密度相关,反之亦然,所以密度和光谱反射率之间的相关性可能非常弱。基于此,为了解决该问题,本研究中提出了基于光谱数据的积雪密度估计混合模型。主要研究目标是利用高光谱NIR成像(PIKA NIR,RESONON Company)(900-1700 nm)以5.5 nm的光谱分辨率测试混合模型(HM)估计季节性积雪密度的性能。混合模型结合了一个分...
2022 - 01 - 20
PROSDM:PROSPECT模型与光谱导数和相似性度量相结合从双向反射率中提取叶片生化性状的适用性叶片生化性状为理解植物光合功能、动态生长、养分循环和初级生产提供了有价值的信息。叶片叶绿素含量(Cab)、类胡萝卜素含量(Cxc)、含水量(Cw)和干物质含量(Cm)是四个重要的叶片生化性状,与植物光合作用、氮素、胁迫和衰老等健康和生长状态密切相关。能够对这些叶片生化性状进行高通量测量的方法对于表征植物生理状态和关键功能过程至关重要。PROSPECT模型是目前最常用的叶片辐射传输模型之一,可从叶片定向半球反射因子(DHRF)光谱来提取叶片生化性状,然而,在应用于叶片双向反射因子(BRF)光谱提取叶片生化性状方面尚待探索。叶片表面反射率和各向异性性状的存在可能是限制PROSPECT从叶片BRF光谱评估叶片生化性状的主要问题。基于此,在本研究中,研究者们提出了一个方法,整合了PROSPECT模型...
2022 - 01 - 18
生态系统呼吸(Re)和甲烷(CH4)通量是两个重要的土壤-大气碳交换过程,已经在局地尺度上得到充分记录。然而,在流域尺度上,对青藏高原多年冻土区这些过程的空间格局和控制因素尚不清楚。基于此,为了填补研究空白,在本研究中,来自四川大学、中国科学院成都山地灾害与环境研究所、山西农业大学、中国科学院西北生态环境资源研究院和西南民族大学青藏高原研究所的研究团队在青藏高原风火山(34°40′-34°46′ N和92°50′–92°62′ E;4580-5410 m a.s.l.;图1a)测量了两个生长季节(2017年和2018年)不同坡向(北向(阴坡)和南向(阳坡))和不同海拔(低、中和高坡位)的生态系统呼吸(Re)和CH4通量,旨在阐明青藏高原草地流域尺度的Re和CH4通量模式并量化生物和非生物因子调节Re和CH4通量的相对贡献。作者利用LGR UGGA便携...
2021 - 01 - 15
全球气候变化引起的预计人口增长以及土地和农业资源可利用性的压力使未来几十年全球粮食供应的需求增加。提高光合作用能力已成为实现作物增产的目标。目前,测量光合作用的方法是耗时的且具破坏性的,这会减慢鉴定具高光合能力的农作物种质的研究和育种工作。作者在1分钟内收集样地(~2 m×2 m)向阳叶片像素的高光谱反射率以量化光合作用参数和色素含量。在两个生长季节(2017年和2018年)利用田间生长的经基因改变了光合途径的烟草,建立了8个光合参数和色素性状的预测模型。利用偏最小二乘法(PLSR)分析可见近红外(400-900 nm)光谱相机测得的植物反射像素,预测了Rubisco最大羧化速率(Vc,max,R2=0.79)和最大电子传递速率(J1800,R2=0.59),最大光饱和光合作用(Pmax,R2=0.54),叶绿素含量(R2=0.87),叶绿素a/b(...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

深圳办事处:

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

武汉办事处:

地址:武汉市洪山区民族大道124号龙安港汇城A座1108 手机:13910499761


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开