北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

日期: 2019-03-19
浏览次数: 203

M.K. Maid1*

, R.R. Deshmukh2

1*Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

2Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

*Corresponding Author: mm915monali@gmail.com 

Available online at: www.ijcseonline.org 


Abstract— Remote Sensing has wide range of applications in many different fields. Remote Sensing has been found to be a valuable tool in evaluation, monitoring, and management of land, water and crop resources. The applications of remote sensing techniques in the field of agriculture are wide and varied ranging from crop identification, detection of disease on different crops & predicting grain yield of crops. Many remote sensing applications are devoted to the agricultural sector. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. The application of remote sensing in agriculture typically involves measuring reflectance of electromagnetic radiation in the visible (390 to 770 nm), near-infrared (NIR, 770 to 1,300 nm), or middle-infrared (1,300 to 2,500 nm) ranges using spectrometers. This paper reviews the concept of hyperspectral remote sensing, use of remote sensing in terms of agriculture field, study of diseased wheat leaves using hyperspectral remote sensing.


Keywords—Remote Sensing, Wheat Leaf Rust, Vegetation Indices, ASD Fieldspec4 Spectroradiometer.

I. INTRODUCTION

Remote sensing refers to the activities of  recording/observing/perceiving (sensing) objects or events at  far away (remote) places. Remote sensing is a sub-field of  geography. In modern usage, the term generally refers to the use of aerial sensor technologies to detect and classify objects on Earth (both on the surface, and in the atmosphere and oceans) by means of propagated signals (e.g. electromagnetic radiation) [1]. The electromagnetic radiation is normally used as an information carrier in remote sensing. The reflection of that energy by earth surface materials is then measured to produce an image of the area sensed. Generally, Remote sensing can be done on two types of data namely imagery and non imagery. It can be done using different kinds of remote sensing devices like ASD fieldspec Spectroradiometer. Remote sensing have wide range of applications in various fields, among which Agriculture plays important role in our day to day life as not only in india but in many countries agriculture is their primary source of income and all human beings, animals and many industries are dependent on agriculture field. agriculture plays key macroeconomic roles in the 

industrialization of developing countries by relieving saving, aggregate demand, fiscal, and foreign exchange constraints on the industrial sector [2].

 In agriculture field winter wheat is one of the highest yielding crops on the farm [3]. Different climatic factors and disease symptoms affects the plant growth and it directly results in yield of crop. Rust are among the most important 

fungal diseases of wheat worldwide [4]. There are three types of rust diseases in wheat crop: Strip Rust, Leaf Rust, Stem Rust.

Wheat rusts are caused by three related fungi [5]: 

• Stripe rust is caused by Puccinia striiformis f. sp. tritici.

• Leaf rust is caused by Puccinia triticina.

• Stem rust is caused by Puccinia graminis f. sp. tritici.

This paper reviews the study of wheat leaf rust (WLR) disease using hyperspectral analysis, different vegetation indices and spectral signatures can be used to estimate the features of diseased and healthy crop. In this review paper ASD Fieldspec4 Spectroradiometer is used for data collection of diseased wheat leaves and healthy wheat leaves. Using different vegetation indices (VIs) biophysical and biochemical properties of crop can be estimated. 

II. BASICS OF REMOTE SENSING

Hyperspectral remote sensing is used for over 100 years for analysis of various objects and their chemical as well as biological composition. But hyperspectral sensor offers an alternate and nondestructive technique for analysis of 

physical and chemical properties of material. Remote sensing of vegetation is mainly performed by obtaining the electromagnetic wave reflectance information from canopies using passive sensors. It is well known that the reflectance of 

light spectra from plants changes with plant type, water content within tissues, and other intrinsic factors [6].

The reflectance from vegetation to the electromagnetic spectrum (spectral reflectance or emission characteristics of vegetation) is determined by chemical and morphological characteristics of the surface of organs or leaves [7]. 

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The main applications for remote sensing of vegetation are based on the following light spectra: (i) the ultraviolet region (UV), which goes from 10 to 380 nm; (ii) the visible spectra, which are composed of the blue (450–495 nm), green (495−570 nm), and red (620–750 nm) wavelength regions; and (iii) the near and mid infrared band (850–1700 nm)[9,10].

III. HYPERSPECTRAL REMOTE SENSING IN AGRICULTURE

Spectral data at the leaf and canopy scales have been utilized to improve the plant disease detection techniques from remotely sensed observations [11,12], where the visible and infrared regions are more sensitive to disease development [13]. The measured spectra can be utilized to early detection of fungus disease. Moreover, the optimized narrow bands vegetation indices were employed to discriminate various disease of wheat [14]. 

III.I Wheat Leaf Rust (WLR) Disease

The wheat rust is an important crop disease which has three types, i.e., wheat yellow rust (WYR), wheat leaf rust (WLR),and wheat stem rust [15]. 

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

WYR disease is identified by a single symptom which occurs as a narrow yellow stripes parallel to nervures on the leaf, whereas WLR disease is caused by the Puccinia triticina fungus and illustrates numerous symptoms simultaneously in various parts of an infected leaf [16]. The WLR symptoms vary from leaf to leaf but it presents a yellow color earlier, then its changes to orange and dark brown. Finally, the disease symptom ends with the dry leaf [17].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The effect of a disease on the pigments and structure of a plant and the change in their spectral responses enable spectroradiometry and remote sensing techniques to detect plant disease effectively [18].

Crop disease can cause significant yield loss and reduction of grain quality, which have a negative impact to food security around the world [19].

IV. EXPERIMENTAL SETUP

IV.I Data Collection

Field spec 4 spectrometer (Analytical spectral device, ASD Co. USA) shown in following figure having parameter details in Table 1. Spectrum data export in ASCII text, then it can analyze spectrum data with different software like ASD View Spec Pro. Unscramble and MATLAB/ Octave [20].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review


Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

V. VEGETATION INDICES FOR ESTIMATION OF WLRSYMPTOMS

Spectral data at different scales including leaf, canopy and landscape-level have been widely used to improve precision [21-24]. In recent years, researchers have studied various spectral vegetation indices (SVIs) to detect different 

vegetation diseases [24-26]. Efficient use of spectral data in detection of plant disease depends on the application. The spectral regions from 400 to 700 and 700 to 1100 are mainly influenced by leaf composition of pigments, structure, and 

water content [27]. The effect of a disease on the pigments and structure of a plant and the change in their spectral responses enable spectroradiometry and remote sensing techniques to detect plant disease effectively [28]. There are 

indices derived from reflectance values at several wavelengths that are able to detect and quantify the leaf content substances such as chlorophyll, anthocyanin, and water [29,30].

By using different types of vegetation indices estimation of biochemical and biophysical properties of crops is possible. Vegetation indices that are used by many researchers have shown in following table [31].


Table 2. Different Vegetation Indices

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

VI. CONCLUSION

As Remote Sensing technology growing rapidly in technological era and hyperspectral Remote sensing has wide number of applications not only in agriculture field but also in different industries which are dependent on agricultural area. With the help of different spectral characteristics like spectral signatures, vegetation indices, reflectance spectra we can use it for discrimination of crops. It can be used to study the severity of disease in crops, estimating the grain yield of crops, analysis and growth modulation of crop. 


ACKNOWLEDGMENT 

This work is supported by Dept. of Computer Science and Information Technology under the funds for Infrastructure under science and Technology (DST-FIST) with sanction no. SR/FST/ETI- 340/2013 to Dept. of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India. The authors would like to thank Department and University Authorities for providing the infrastructure and necessary 

support for carrying out the research. 


REFERENCES

[1] A. Chitradevi, S. Vijayalakshmi, “Random Forest for Multitemporal and Multiscale Classification of Remote Sensing Satellite Imagery”, International Journal of Computer Sciences and Engineering, Vol. 4, Issue.2, pp.59-65, 2016.

[2] D. Souza, “Growth Complementarity Between Agriculture and Industry: Evidence from a Panel of Developing Countries”, 2014.

[3] G. Boyle, “The Winter Wheat Guide”, Teagasc, pp. 21-40, 2016.

[4] S. N. Wegulo, “Rust Diseases of Wheat”, NebGuide, 2012.

[5] S. Markell, G. Milus, R. Cartwright, J. Hedge, “Rust Diseases of Wheat”, Agriculture and natural resources.

[6] L. Chang, S. Peng-Sen, and Liu Shi-Rong, “A review of plant spectral reflectance response to water physiological changes,” Chinese Journal of Plant Ecology, vol. 40, no. 1, pp. 80–91, 2016.

[7] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: a review,” Precision Agriculture, vol. 13, no. 6, pp. 693–712, 2012.

[8] J. B Campbell, “Introduction to Remote Sensing”, Taylor and Francis, London, 1996. 

[9] H. R. Bin Abdul Rahim, M. Q. Bin Lokman, S. W. Harun, “Applied light-side coupling with optimized spiral-patterned zinc oxide nanorod coatings for multiple optical channel alcohol vapor sensing,” Journal of Nanophotonics, vol. 10, no. 3, Article ID 036009, 2016.

[10] B. A. Cruden, D. Prabhu, and R. Martinez, “Absolute radiation measurement in venus and mars entry conditions,” Journal of Spacecraft and Rockets, vol. 49, no. 6, pp. 1069–1079, 2012.

[11] S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, “A review of advanced techniques for detecting plant diseases,” Comput. Electron. Agriculture, vol. 72, no. 1, pp. 1–13, 2010.

[12] C. Buschmann and E. Nagel, “In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation,” Int. J. Remote Sens, vol. 14, no. 4, pp. 711–722, 1993.

[13] N. K. Poona and R. Ismail, “Using Boruta-selected spectroscopic wavebands for the asymptomatic detection of Fusarium circinatum stress,” IEEE J. Select. Topics Appl. Earth Observations Remote Sens., vol. 7, no. 9, pp. 3764–3772, 2014.

[14] W. Huang, “New optimized spectral indices for identifying and monitoring winter wheat diseases,” IEEE J. Select. Topics Appl. Earth Observations Remote Sens., vol. 7, no. 6, pp. 2516–2524, 2014.

[15] M. D. Bolton, J. A. Kolmer, and D. F. Garvin, “Wheat leaf rust caused by Puccinia triticina,” Molecular Plant Pathology, vol. 9, no. 5, pp. 563–575, 2008.

[16] C. Robert, M.-O. Bancal, B. Ney, and C. Lannou, “Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status,” New Phytologist, vol. 165, no. 1, pp. 227–241, 2005.

[17] D. Ashourloo, H. Aghighi, A. A. Matkan, M. R. Mobasheri, and A. M. Rad, “An Investigation Into Machine Learning Regression Techniques For The Leaf Rust Disease Detection Using Hyperspectral Measurement”, IEEE journal of selected topics in applied earth observations and remote sensing, vol. 9, pp. 4344 – 4351, 2016.

[18] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J.H. Luo, “Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements”, Comput. Electron. Agric, pp. 13–23, 2012.

[19] R. N. Strange, P. R. Scott, “Plant Disease: A threat to global food security”, Annual reviews phytopathol, vol. 43, pp. 83-116, 2005.

[20] R. M. Misal, R. R. Deshmukh, “Application of Near-Infrared Spectrometer in Agro-Food Analysis: A Review”, International Journal of Computer Applications, Vol. 141 No.7, pp. 0975 – 8887, 2016.

[21] H.D Roelofsen, P. M. van Bodegom, L. Kooistra, , J. P.M. Witte, “Trait estimation in herbaceous plant assemblages from in situ canopy spectra” Remote Sens., Vol. 5, pp. 6323–6345, 2013.

[22] S. Delalieux, A. Auwerkerken, V.W. Verstraeten, B. Somers, R.Valcke, S.Lhermitte, J. Keulemanss, P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in Apple leaves”, Remote Sens, Vol. 1, pp. 858–874, 2009.

[23] U. Steiner, K. Bürling, E.C. Oerke, “Sensor use in plant protection”, Gesunde Pflanz, Vol. 60, pp. 131–141, 2008. 

[24] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J .Wang, “Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresse”,Field Crops Res., Vol. 134, pp.165–174,2012.

[25] C.Hillnhütter, A.K. Mahlein, R.A. Sikora, E.C. Oerke, “Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields”, Field Crops Res., Vol. 122, pp. 70–77, 2011. 

[26] D. Moshou, C. Bravo, J. West, S. Wahlen, A. McCartney, H. Ramon, “Automatic detection of ―yellow rust‖ in wheat using reflectance measurements and neural networks”, Comput. Electron. Agric, Vol. 44, pp. 173–188, 2004.

[27] A.K. Mahlein, T. Rumpf, P. Welke, H.W. Dehne, L. Plümer, U. Steiner, E.C. Oerke, “Development of spectral indices for detecting and identifying plant diseases”, Remote Sens. Environ, Vol. 128, pp. 21–30, 2013. 

[28] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L. Yuan, J.H. Luo, “Detecting powdery mildew of winter wheat using leaf level13–23, 2012. 

[29] A.A. Gitelson, Y.J. Kaufman, R. Stark, D. Rundquist, “Novel algorithms for remote estimation of vegetation fraction”, Remote Sens. Environ, Vol.80, pp. 76–87, 2002. 

[30] J. Penuelas, F. Baret, I. Filella, “Semiempirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance”, Photosynthetica, Vol. 31, pp. 221–230, 1995. 

[31] P. V. Janse, R. R. Deshmukh, “Hyperspectal Remote Sensing for Agriculture: A Review”, International Journal of Computer Applications,Vol.172 No.7, pp. 0975 – 8887, 2017.

[32] A. R. Huete, B. K. Liu, L. Van, “A comparison of vegetation indices over a global set of TM images for EOS-MODIS”, Remote Sensing of Environment, Vol. 59, pp. 440-451, 1997. 

[33] J.W. Rouse, R.H. Haas, J.A. Schell, D.W. Deering, “Monitoring vegetation systems in the great plains with ERTS, Third ERTS symposium”, NASA SP-351, NASA Washington, DC, Vol. 1, pp. 309-317, 1973. 

[34] C.F. Jorden, “Leaf area index from quality of light on the forest floor”, Ecology, Vol. 50(4), pp. 663-666, 1969. 

[35] B. Gao, “NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space”, Remote Sensing of Environment, Vol. 58, pp. 257-266, 1996. 

[36] J. Penuelas, J. Pinol, R. Ogaya, I. Lilella, “Estimation of plant water content by the reflectance water index WI (R900/ R970)”, International journal of remote sensing, Vol. 18, pp. 2869-2875, 1997. 

[37] Y. J. Kaufman, D. Tanier, “Atmospherically resistant vegetation index (ARVI) for EOS-MODIS”, IEEE Transaction on Geoscience and Remote Sensing, Vol. 30(2), pp. 261-270, 1992. 

[38] A.R. Huete, “A soil adjusted vegetation index (SAVI)”, Remote Sensing of Environment, Vol. 71, pp. 158-182, 2000. 

[39] A.A. Gitelson, Y. J. Kaufman, R. Stark, D. Rundquist, “Novel algorithm for remote estimation of vegetation fraction”, Remote Sensing of Environment, vol. 80, pp. 76-87, 2002. 

[40] J. Penuelas, F. Baret, I. Filella, “Semi empirical indices to assess carotenoids/ chlorophyll a ratio from leaf spectral reflectance”, Photosynthetica, Vol. 31, pp. 221-230, 1995. 

[41] G. A. Blackburn, “Spectral indices for estimating photosynthetic pigment concentration: A test using senescent tree leaves”, International journal of remote sensing, Vol. 19, pp. 657-675, 1998. 

[42] G. A. Blackburn, “Quantifying chlorophyll and carotenoids from leaf to canopy scale: An evaluation of some hyperspectral approaches”, Remote Sensing of Environment, Vol. 66, pp. 273-285, 1998. 

[43] M. N. Merzlyak, A. A. Gitelson, O. B. Chivkunova, Y. Ratikin, “Nondestructive optical detection of pigment changes during leaf senescent and fruit ripening”, Physiologia Plantarum, Vol. 105, pp. 135-141, 1999. 

[44] M. S. Kim, “The use of narrow spectral bands for improving remote sensing estimation of fractionally absorbed photosynthetically active radiation (fAPAR)”, Master Thesis, Department of Geography, University of Maryland, College Park, 1994. 

[45] C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. de Colstoun, J. E. McMurtrey, “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance”, Remote Sensing of Environment, Vol. 74, pp. 229-239, 2000. 

[46] A. A. Gitelson, G. P. Keydan, M. N. Merzlyak, “Three band model for noninvasive estimation of chlorophyll, carotenoids and anthocyanin contents in higher plant leaves”, Geophysical Research Letters, Vol. 33, L11402, 2006. 

[47] A. A. Gitelson, M. N. Merzlyak, O. B. Chivkunova, “Optical properties and non-destructive estimation of anthocyanin content in plant leaves”, Photochemistry and Photobiology, Vol. 74(1), pp. 38-45, 2001. 

[48] J. A. Gaman, J. S. Surfus, “Assessing leaf pigment content and activity with a reflectometer”, New Phytologist, Vol. 143, pp. 105-117, 1999. 

[49] A. K. Van Den Berg, T. D. Perkins, “Non-destructive estimation of anthocyanin content in autumn auger maple leaves”, Horticultural Science, vol. 40(3), pp. 685-685, 2005. 

[50] A. A. Gitelson, Y. Zur, O. B. Chivkunova, M. N. Merzlyak, “Assessing carotenoid content in plant leaves with reflectance spectroscopy, Photochemistry and Photobiology, Vol. 75(3), pp. 272-281, 2002. 

[51] A. R. Hunt, B. N. Rock, “Detection of changes in leaf water content using near- and middle-infrared reflectance”, Remote Sensing of Environment, Vol. 30, pp. 43-54, 1989. 

[52] B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, T. Hoshizaki, “Detection of forest damage”, BioScience, Vol. 36(7), pp. 439-445, 1986. 

[53] J. A. Gamon, L. Serrano, J. S. Surfus, “The photochemical reflectance index: An optical indicator of photosynthetic radiation-use efficiency across species, functional types, and nutrient level”, Oecologia, Vol. 112, pp. 492-501, 1997. 

[54] D. N. H. Horler, M. Dockray, J. Barber, “The red-edge of plant leaf reflectance”, International journal of remote sensing, Vol. 4, pp. 273-288, 1983. 




News / 相关新闻 More
2020 - 09 - 11
【摘要】森林的长期生产力和固碳能力受气候变化影响,已成为全球关注的问题。本研究中,我们提供了一种简单且无损的方法来研究多时间尺度上树木CO2同化率。这种新的方法结合了树干液流和稳定碳同位素分辨率以估算碳同化率。我们通过分析变异性并进行配对样本t检验,比较了气体交换测量和新方法测得的CO2同化率,以验证其准确性和适用性。气体交换和同位素测量都表明早晨CO2同化率高于下午,峰值在10-11 am左右出现,可能是由于夜间的水储存和早晨的高气孔导度。侧柏日,月,年尺度上CO2同化率的变异性与供水条件有关。与以往的研究相比,我们利用稳定碳同位素分辨率(Δ13C)和树干液流测量估算的年CO2同化率的结果与传统方法结果相一致。侧柏对供水可以有效的响应,这就解释了为什么它可以很好地适应半干旱区环境。估算CO2同化率的新方法是准确的,且适用于北京周边的半干旱地区。【研究区域】位于燕山鹫峰国家森林生态系统研究...
2020 - 09 - 01
【摘要】最近研究发现,在混合落叶阔叶林中,相比于叶片氮含量,叶绿素含量可以更好地指示叶片的光合能力。叶片光合能力与叶绿素含量之间关系的一个关键概念就是光合成分(即光收集,光化学和生化成分)的协调调节。为了检验该假设,作者在生长季测量了水稻地叶片氮含量(NLeaf),叶片光合色素(即叶绿素(ChlLeaf),类胡萝卜素(CarLeaf)和叶黄素(XanLeaf))以及叶片光合能力(即1,5-二磷酸核酮糖(RuBP)在25℃被羧化(Vcmax25)和再生(Jmax25)的最大速率)的季节性变化。同时还调查了NLeaf,叶片光合色素,晴天中午的叶片光化学植被指数(PRILeaf,noon)的有效性及其可能的组合,以估算水稻地的叶片光合能力(即Vcmax25和Jmax25)。ChlLeaf与Vcmax25和Jmax25高度相关(R2分别为0.89和0.87),优于NLeaf(R2分别为0.80和0...
2020 - 08 - 20
【摘要】正确理解地下水循环模式及其可更新能力对地下水资源的评估、合理开发和利用至关重要。在干旱或半干旱地区地下水补给量少且变异性高,因此难以估算。同位素研究和混合模型相结合可以直接估计含水层的可更新性。本文利用环境同位素方法研究了中国西北半干旱地区—银川盆地的潜水循环模式以及更新能力,主要研究了不同水体的同位素特征,潜水同位素年龄,水循环模式以及更新速率。结果表明,银川盆地主要有两个补给源,即局部大气降水(占13%)和黄河(占87%)。银川盆地潜水的平均滞留时间是48年,平均更新速率是3.38%/a。潜水具有较强的更新能力,更新速率与同位素年龄一致。【研究区域】位于中国西北地区的银川平原。图1 银川盆地位置图【样品收集和测量】收集了来自全球大气降水监测数据和国际原子能机构的30组降水数据,并收集了11个黄河水样品,47个潜水样品。利用LGR的液态水同位素分析仪测量所有水体的δ18...
2020 - 08 - 13
冷害是造成作物严重损失和不可逆转伤害的灾害之一。为避免产量损失,可利用高通量表型选择耐寒胁迫的作物品种。如今,无损光谱图像分析已成为一种有效方法,并已广泛应用于高通量表型分析中,反映出植物结构组成,生长发育过程中的生理,生化特性和特征。本研究利用卷积神经网络(CNN)模型提取可见-近红外范围的特征光谱估计玉米幼苗的冷害。文中以五个品种的冷处理玉米幼苗的高光谱图像为研究对象。光谱范围为450-885 nm。高斯低通滤波和Savitzky-Golay平滑方法结合一阶导数进行光谱数据的预处理。从每种玉米幼苗选定的感兴趣区域获取3600个像素样本用于CNN建模。CNN模型建立后,从高光谱图像中提取400个像素样本作为每个品种的测试集。最后,通过分析分类准确度和计算效率确定一个CNN模型。CNN检测到的不同类型的玉米幼苗的冷害水平分别为W22 (41.8 %),BxM (35%),...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(研发、售后)
          光华创业园科研楼二层东侧(销售、市场)
电话:010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

深圳办事处:

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

武汉办事处:

地址:武汉市洪山区民族大道124号龙安港汇城A座1108 手机:13911500497,13910499761


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开