北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

日期: 2020-07-09
浏览次数: 122

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

本文旨在利用高光谱数据建立一个准确、可解释的植物病害识别模型。由真菌引起的大豆炭腐病是一种严重影响大豆产量的世界性病害。在383-1032 nm范围内,Resonon高光谱成像仪在240个不同的波长处捕获高光谱图像。针对大豆炭腐病,科学家建立了3D卷积分网络模型,模型分类精度为95.73%,并利用可视化显著图检验训练模型、敏感像素位置以及分类的特征敏感波段,发现:敏感特征波段为733 nm,这和常用的鉴别植物健康程度的特征波段范围(700-1000nm)是一致的。

【试验方法】

感染炭腐病的大豆:分别在第3691215天采集健康的和受感染的大豆茎秆样品,在测量病害程度之前,实时采集健康的和收到感染的茎秆的高光谱图像。

测量仪器:美国Resonon高光谱成像仪,型号:Pika XC (包含安装支架、移动平台、操作软件和270 w卤素灯)。

Pika XC性能:光谱通道数:240;波段范围400-1000 nm;分辨率:2.5 nm


植物病害的高光谱图像解译识别:3D-CNN与显著图模型

a)室内高光谱成像系统

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

(b)不同光谱波段的大豆茎秆样品高光谱图像 (c)大豆茎秆内外部RGB图像病害程度比较

3D-CNN模型由两个连接的卷积分模型组成,其中,一个小的构架用于防止训练模型过饱和。2个图层(3*3mm空间维度,16个波段的光谱维度)作为第一个卷积分分层,4个3*3*16的图层作为第二个卷积分层,修正线性输入模型作为输出层。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

【结果分析】

1.  539个测试图像用于3d-cnn模型的精度评估。

如表1所示:模型分类准确为95.73%0.92的分类精度也体现了不同病害阶段的普适性。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

2.  可视化显著图评价

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

我们可视化了用显著图分类出来的部分图像, 最大分类得分的输入图像用于判别敏感像素位置。图三为感染病害和健康图像的显著图。每个像素的级别大小用于评价其在分类过程中的重要性。受感染茎秆图像的显著图比图像中严重感染区域(红棕色)对应的位置具有更高的数值。这表明,严重感染的图像区域包含最敏感的像素位置,可以预测受感染分数。无论是健康图像还是感染图像,显著图高值都集中在茎的中部区域。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型


测试图像的直方图数据,代表了每个波长最大显著图的图像像元百分比C*=130 (733 nm)

1)在测试数据中,近红外区的波长733 nm (C*=130)是所有波长中最敏感的;

2)在703 ~ 744 nm的光谱范围内,15个波长在测试图像的像素位置中占33%,是梯度值的最大值;

3)受感染样本的可见光谱波长(400-700 nm)比健康样本更敏感。

【结果分析】

数据结果证明了3D-CDD模型可以有效地学习高维的高光谱数据,应用于大豆炭腐病鉴别领域。从生理学机理角度,可视化显著图解释了高光谱特征波段在分类中的重要性,使模型更具有说服力。因此,我们对于该模型更加自信,在未来,基于鲁棒可解释机制的波段选择将有助于高光谱数据的降维,也将有助于设计高通量表型分析的多光谱摄成像系统。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型.pdf


News / 相关新闻 More
2022 - 11 - 18
土壤水力参数,如田间持水量(FC)和永久萎蔫点(PWP),在灌溉管理、干旱风险评估和土地利用规划等方面发挥着重要作用。这些水力特性是动态的,随土壤类型、作物类型和生长季而变化。传统方法估算大尺度水力特性费时费力,而土壤传递函数(PTF)作为一种替代方法,已被用于使用易测量的土壤特性(如土壤粒级、有机碳和容重)来估计土壤水力特性。这些预测参数在很大程度上受各种内在土壤特性如土壤质地、结构、有机质、容重和孔隙度的影响。随着光谱技术的不断发展,因其快速、低成本和无损测量,许多研究者已经利用可见近红外(Vis-NIR)光谱预测了土壤特性,而使用光谱数据绘制印度土壤类型水力特性的研究非常有限。基于此,在本研究中,一组研究团队在印度卡纳塔克邦高原北部地区收集了558个土壤样本,在实验室中测量了其FC, PWP和土壤含水量,并利用ASD FieldSpec光谱仪测量土壤光谱反射率。通过支持向量机、随机森...
2022 - 11 - 14
了解亚热带森林树种的准确信息对于森林可持续管理、生态系统服务评估、生物多样性监测以及生态环境保护至关重要。因此,亟待快速有效的方法对单个树种进行分类。传统的树种地面调查费事、费力、成本高,难以大面积实施。而遥感可以获取较大区域的特征信息。许多遥感数据,如超高分辨率RGB、机载高光谱和雷达数据,已广泛应用于单木分割和树种分类。然而以往都是利用其中一种或两种类型的数据进行研究,综合这三种遥感数据进行树种分类的研究十分有限。基于此,为填补研究空白, 研究者们于2019年8月在中国南方深圳的亚热带阔叶林聚龙山公园(114°23′28′′E,22°43′50′′N)基于UAV LiDAR,高光谱(Resonon Pika L高光谱成像仪)、超高分辨率RGB数据以及地面数据进行单个树种的分类。作者首次开发了watershed-spectral-textural-controlled...
2022 - 11 - 09
【摘要】土壤含水量的时空异质性影响着土壤水和植物茎木质部水的同位素组成。然而,土壤水分条件对广泛报道的土壤水-植物茎木质部水同位素偏差的影响尚缺乏系统地评估。为此,本研究连续两年在两个土壤水分条件不同的样地测定了柠条茎木质部水和土壤水的δ2H和δ18O值(利用全自动真空冷凝抽提系统LI-2100,北京理加联合科技有限公司)提取土壤和植物茎木质部中的水分,然后进行同位素测量)。结果表明,在较湿润的样地1,茎木质部水与土壤水在两年中都表现出明显的同位素偏差(两者的重叠率【研究区域】该试验是在中国黄土高原北部六道沟小流域 (38°46′-38°51′N,110°21′-110°23′E)进行。【研究方法】(1) 土壤束缚水同位素的计算本研究中,将张力计在−60 kPa压力下收集到的水分视为土壤移动水,而压力值大于−60 kPa时收集到的水分则视为土壤束缚水...
2022 - 10 - 27
在大气、陆地、海洋和湖泊环境中均已发现了微塑料(颗粒20-1400 kg/m3。相当一部分人造塑料比水重,当其进入到水环境中时,会进入到沉积物系统中。已有研究表明,海洋沉积物中微塑料的存在会改变沉积物微生物群落组成,显著影响N循环,并会影响沉积物生物地球化学过程等。在全球气候变暖的背景下,在沉积物-水-大气界面,湖泊生态系统的物质交换更频繁,其对环境变化更敏感,因此,应该重视微塑料对淡水沉积物的影响。此外,淡水湖泊,水库及其沉积物是温室气体排放的重要来源。应注意微塑料进入淡水沉积物中时是否会影响其生态环境、温室气体排放和微生物群落。近来,微塑料研究重点已逐渐从海洋水环境转向淡水和沉积环境。然而,很少有研究关注淡水沉积环境中微塑料的影响和生态效应。基于此,在本文中,来自南开大学环境科学与工程学院的研究团队选择5~2000 μm的微塑料进行实验。将六种不同直径的聚对苯二甲酸乙二醇酯(PET)颗...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开