北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

基于ENVI二次开发的Resonon高光谱图像拼接与几何校正评估

日期: 2020-07-09
浏览次数: 440

摘要

针对推扫式成像光谱仪获取的狭带影像需要经过几何校正才能拼接形成空间二维影像的问题,提出了基于ENVI二次开发的高光谱推扫图像拼接技术。基于单应映射建立光谱仪倾斜状态下与正射状态下图像上的二维点之间的关系,校正由姿态变化引起的图像畸变结合GPS数据修正因飞行速度变化引起的狭带重叠将校正后的狭带影像拼接起来。在ENVI二次开发平台上进行技术集成,实现了Resonon推扫高光谱狭带影像的自动校正拼接。对河北保定郊区高光谱影像的校正拼接实验证明,该方法与光谱仪自带拼接软件校正结果接近经纬度坐标差均在1m以内,均方根误差约为0.7389能够满足一般高光谱遥感应用中的地理精度要求。


研究目的:

根据单应映射原理,建立光谱仪倾斜和正射状态下像点的映射关系,利用GPS/INS组合导航数据校正狭带影像中的畸变,拼接成一幅完整的影像,并在ENVI二次开发平台上实现推扫狭带影像的自动校正和拼接。


推扫成像畸变原因:

推扫式成像是利用飞行平台的向前运动,借助于与飞行方向垂直的扫描线记录而构成二维图像。推扫型成像光谱仪通常采用一个垂直于运动方向的面阵CCD来感应地面响应在飞行平台向前运动中完成二维空间扫描,平行于平台运动方向通过光栅和棱镜分光完成光谱维扫描,因此,CCD上一个点对应一个谱段,一条线对应一个谱面。CCD探测器每次成像是空间一条线上的光谱信息。为了获得空间二维图像,再通过机械推扫,完成整个平面的图像和光谱数据采集。

推扫成像时,CCD探测器所记录的高光谱图像数据是沿着飞行方向的条幅,由于搭载光谱仪的飞行平台在飞行过程中,不能一直保证理想的姿态正射获取影像,速度和姿态的不稳定导致飞行平台的位置、航偏角、俯仰角和横滚角不断随机变化,引起光谱仪拍摄时外方位元素也不断随机变化。因此,CCD曝光时每条扫描线对应的光谱仪外方位元素不一致引起了图像的几何畸变:

1. 飞行平台姿态不稳定造成地面扫描行之间相互交错,图像扭曲变形,影响后期地物目标的解析和判别。

2. 飞行平台速度不稳定易造成扫描行之间的行间距忽大忽小,出现重叠或间隙,为了获得地面的完整影像,通常推扫成像需保证一定的采样率。因此,在图像拼接时就需要借助GPS位置信息对重叠的扫描行进行几何纠正和图像融合处理。


IDL实现

IDL是美国ITT VIS公司推出的第四代交互式、跨平台、面向矩阵处理的编程语言,具有快速的数据分析、图像处理和强大的可视化功能。采用IDL语言调用ENVI平台中的图像处理函数,可以很方便地进行二次开发,实现遥感数据的快速分析和可视化。

推扫图像的自动拼接主要包括如下3个基本步骤:

(1)影像和GPS/INS数据读取:遥感影像数据包含图像本身和头文件,ENVI二次开发提供了函数读取遥感影像及其属性。如ENVI_OPEN_FILE、ENVI_FILE_QUERY、ENVI_GET_ SLICE等。GPS/INS数据存储于文本文件中,按照文本文件读取方式即可获得狭带影像获取时光谱仪的姿态和位置信息。

(2)单应矩阵计算和单应映射:以北东地坐标系为地理坐标系,依据公式计算得到单应矩阵H。主要代码命令如下:

H=M_inv#MATRIX_POWER(C, -1)#M;计算单应矩阵.

所以,对于狭带影像上的每一个二维点 ( x,y ) ,都可以获得校正后的对应点 (x,y ) ,点 ( x,y ) 的灰度值即为点 ( x,y ) 的灰度值。

(3)图像拼接:校正后的每条狭带图像中心点的二维地理坐标即光谱仪成像中心的GPS 二维坐标,根据光谱仪的成像地面分辨率,选定影像投影方式,可以为每条狭带设置地理信息。主要代码命令如下:

map_info=ENVI_MAP_INFO_CREATE( /geographic, mc=mc, ps=ps ); 为狭带添加地理信息。

拼接后的影像被认为是光谱仪理想姿态下获取的正射影像,具有与GPS获取的一致的位置信息,拼接影像点的高光谱曲线与原始扫描行对应点的一致,能够真实地反映地面的空间特征和光谱特征。


实验结果与分析:

本文选择河北省保定市郊区的高光谱影像进行校正拼接实验,影像由搭载于无人机的PikaL 高光谱成像仪拍摄获取,PikaL高光谱成像仪由美国Resonon公司设计生产,光谱范围为400-1000nm,光谱分辨率为2.1 nmCCD扫描行宽度为900像素。飞行过程中同时搭载惯导系统实时获取光谱仪的姿态位置信息。高光谱仪将推扫获取的原始狭带影像先简单拼接起来存储于固态硬盘中,此时的地理信息并未经过纠正图像存在几何畸变图a所示为原始图像的假彩色图像狭带经过几何校正和拼接后才能正确显示地面目标的特征,如图b所示

基于ENVI二次开发的Resonon高光谱图像拼接与几何校正评估

为了能够定量检验该几何校正方法的效果同时采用Pika L高光谱成像仪自带的软件对原始影像进行几何校正将两种方法得到的校正影像进行比较。两种校正方法均采用UTM 投影WGS-84为基准面。首先在软件校正影像中随机选取10个均匀分布的明显地物点读取其坐标值,作为采样点用于评定校正精度,然后从本文方法校正后影像中读取其相应坐标值经过对10个采样点残差的计算得到如表1所示的精度检验结果。

基于ENVI二次开发的Resonon高光谱图像拼接与几何校正评估

表1:北向距离均方根误差为0.6327m,东向距离均方根误差为0.3817m,

总均方根误差为0.7389

由表1可以看出,采样点在x和y方向上的坐标偏移均不超过1m,两种方法得到的校正图像地理信息较为接近;y方向坐标均方根误差大于x方向坐标均方根误差,即像点坐标的经度值准确性高于纬度值。对于某些地理精度要求不高的航空高光谱遥感应用来说,本方法取得的校正效果已满足需求。如果需要进一步提高精度,可以通过增加地面控制点或与高精度地图进行图像配准实现几何精校正。


结语

本文根据推扫成像和单应映射原理,结合GPS/INS组合导航系统实时获取光谱仪姿态角度和位置信息。在ENVI二次开发平台上,采用IDL语言实现了高光谱仪推扫狭带影像的自动校正和拼接。验证实验表明,本方法与自带软件校正拼接效果接近,均方根误差基本满足一般的高光谱遥感应用。虽然本文方法能够取得较为理想的校正拼接效果,但是单扫描行的校正过程耗时较长,无法实时获取校正影像,下一步将就提高校正拼接效率展开更加深入的研究。另外,拼接过程中不同成像条件下的匀色处理同样是后续需要研究的内容。


原文下载连接:

基于ENVI二次开发的高光谱图像拼接与几何校正评估


News / 相关新闻 More
2023 - 02 - 07
土壤中重金属是有害的,其迁移和累积会严重威胁生态环境安全和人类健康。砷(As)具有高神经毒性和致畸性。人类活动,例如采矿和工业生产会导致大量As释放到土壤中。快速准确确定土壤中As浓度对As污染评估至关重要。传统的重金属调查方法旨在对野外采集的土壤样品进行化学性质测试,费事费力、成本高。高光谱遥感具有高光谱分辨率、宽波段范围和连续光谱信息等特点,已广泛用于土壤重金属浓度的估算。然而,现存的基于高光谱数据的土壤重金属浓度估算模型忽视了土壤光谱和重金属浓度之间的空间非稳态。基于此,来自首都师范大学的一组研究团队以北京东北部地区(40°10′0″-40°15′30″ N,116°58′4″-117°5′4″ E)为例,基于实验室测得的光谱数据(ASD FieldSpec 4光谱仪),结合地理加权回归(GWR)和XGBoost算法提出了一种新的模型(GW-X...
2023 - 02 - 02
中国是最大的温室蔬菜生产国,约占世界生产面积的83%。由于全年生产和大量施肥,温室蔬菜产量高,但也导致了土壤质量的恶化和严重的环境问题。近来,无土栽培系统(SCS)在温室蔬菜生产中逐渐发展起来,它可以减少甚至消除传统栽培方式的许多问题,。在SCS中,无土栽培基质,也称为无土栽培生长介质,可代替土壤固定根系系统,为植物提供水分和养分,为根区提供充足的通风。然而,由于N肥的大量输入,N2O排放较高。N2O是一种温室气体,具有温室效应,加剧全球变暖,在大气中存留时间长,可输送到平流层,导致臭氧层破坏,引起臭氧空洞。无土栽培基质已成为SCS中N2O排放的主要载体,但尚不清楚其产生和消耗的相关途径,因此亟待研究SCS无土栽培基质的N2O排放源。且无土栽培基质与土壤理化和生物性质高度不同,其具有更准确的水和养分分布,因此也有必要确定管理措施对SCS中N2O排放的影响。基于此,在本文中,来自中国农业科学...
2022 - 12 - 30
松材线虫病(PWD),是由松材线虫(Bursaphelenchus xylophilus)引起的具有毁灭性的国际森林病害之一,可以在几个月内对松林造成快速、大面积的危害,已对我国造成了巨大的生态和经济损失。因此,及时的监测措施非常必要。高光谱遥感可以获取数百个波段和连续波长的数据来捕获受危害树木的生理变化,有助于检测早期病虫害。而基于无人机的高光谱成像仪可以准确观测树木冠层的变化,成为评估森林健康情况的有效工具。然而,以往的研究大多使用单日的无人机高光谱数据,难以监测病害发生的时间变化并确定最佳的监测时期。基于此,在本研究中,来自北京林业大学的研究团队于2021年5-10月使用多时态的数据在中国辽宁省抚顺市东洲区(124°12′36′′ -124°13′48′′ E,41°56′53′′ -41°57′46′′)进行了研究。在PWD爆发期间,作者于2...
2022 - 12 - 28
土壤质量直接影响其有机体的健康。然而,土壤容易受到人类活动的干扰,如采矿、工业化和农业活动,导致严重的土壤污染。在各种土壤污染中,有毒元素会对人类和家畜健康以及食品安全造成威胁。因此,监测这些污染类型的浓度和分布对于土壤修复项目至关重要。然而,传统采样和实验室分析方法成本高、费事费力且局限于采样点位置,不能很好地具体化浓度的空间分布。因此,需要具有高空间效应的快速有效的技术。许多研究已经利用图像光谱和其它辅助数据或环境变量来预测有毒元素的分布。而由于卫星图像中云或阴影的存在,土壤采样和图像获取日期存在差距,这种情况下,需要用到具有不同光谱和空间特征图像的融合,以增加图像的时间分辨率。Sentinel-2A是“全球环境与安全监测”计划的第二颗卫星,其携带一枚多光谱成像仪,可覆盖13个光谱波段,从可见光和近红外到短波红外,具有不同的空间分辨率。Landsat 8是美国陆地卫星计划的第八颗卫星,...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开