| English | 收藏 | 设为首页 | 会员中心 | 投稿 |
您当前的位置:首页 > 技术文章 > 技术文献

应用ASD地物光谱仪区分地中海附近海岸的本土植物和外来入侵灌木

时间:2015-05-12 11:26:09  来源:ASD  作者:Cindy  [打印版]

Field Spectroscopy in the VNIR-SWIR Region to Discriminate between Mediterranean Native Plants and Exotic-Invasive Shrubs Based on Leaf Tannin Content

      基于可见光近红外(VNIR)和短波红外(SWIR),科学家应用ASD地物光谱仪测量叶片单宁的含量,从而区分地中海附近海岸的本土植物和外来入侵灌木。

Authors: Jan Rudolf Karl Lehmann, André Große-Stoltenberg, Meike Römer and Jens Oldeland
Abstract: The invasive shrub, Acacia longifolia, native to southeastern Australia, has a negative impact on vegetation and ecosystem functioning in Portuguese dune ecosystems. In order to spectrally discriminate A. longifoliafrom other non-native and native species, we developed a classification model based on leaf reflectance spectra (350–2500 nm) and condensed leaf tannin content. High variation of leaf tannin content is common for Mediterranean shrub and tree species, in particular between N-fixing and non-N-fixing species, as well as within the genus, Acacia. However, variation in leaf tannin content has not been studied in coastal dune ecosystems in southwest Portugal. We hypothesized that condensed tannin concentration varies significantly across species, further allowing for distinguishing invasive, nitrogen-fixing A. longifoliafrom other vegetation based on leaf spectral reflectance data. Spectral field measurements were carried out using an ASD FieldSpec FR spectroradiometer attached to an ASD leaf clip in order to collect 750 in situ leaf reflectance spectra of seven frequent plant species at three study sites in southwest Portugal. We applied partial least squares (PLS) regression to predict the obtained leaf reflectance spectra of A. longifolia individuals to their corresponding tannin concentration. A. longifolia had the lowest tannin concentration of all investigated species. Four wavelength regions (675–710 nm, 1060–1170 nm, 1360–1450 nm and 1630–1740 nm) were identified as being highly correlated with tannin concentration. A spectra-based classification model of the different plant species was calculated using a principal component analysis-linear discriminant analysis (PCA-LDA). The best prediction of A. longifolia was achieved by using wavelength regions between 1350–1410 nm and 1630–1740 nm, resulting in a user’s accuracy of 98.9%. In comparison, selecting the entire wavelength range, the best user accuracy only reached 86.5% for A. longifolia individuals.

 

来顶一下
近回首页
返回首页
相关文章
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
推荐文章
利用轻轨公共交通平台监测城市范围内的温室气体和污染物 (应用LGR便携式温室气体分析仪,NO2分析仪)
利用轻轨公共交通平台
应用LGR CO2同位素分析仪对幽门螺杆菌患者进行糖尿病的无创诊断
应用LGR CO2同位素分
应用ABB LGR分析仪与双标水法(Doubly-Labeled Water Method)显著地促进人体能量消耗的评估
应用ABB LGR分析仪与
中欧地区混合农业地区塔楼表面大气N2O测量的第一批结果
中欧地区混合农业地区
栏目更新
栏目热门