北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

通过高光谱成像利用机器学习评估麦草畏对麦草畏不耐受性大豆的农作物损害

日期: 2020-07-09
浏览次数: 126

111 

在大豆的种植中,对杂草的管理有利于作物产量最大化。研究发现麦草畏可有效防除数种一年生和多年生的阔叶杂草。然而,麦草畏喷雾偏离目标漂移或蒸气漂移会严重危害易感作物,包括麦草畏不耐受性作物。因此评估麦草畏漂移对农作物的损害对于有效控制杂草具有重要的意义。目前,作物损害主要是通过评估生理和生化变化(叶面积,叶色,植物高度,产量等)来确定的。但是,这些评估需要耗费大量的劳动力。对于大尺度农田的评估,则需要更快速且经济高效的方法。高光谱成像(HSI)可以快速扫描植物样品且能获得图像中每个像素的完整反射光谱,已用于植物生理和生化特性的鉴定以及有毒金属,盐和病虫害引起的植物胁迫的检测。同时结合许多机器学习(ML)算法,例如贝叶斯决策,最大似然分类,K均值聚类,随机森林,支持向量机和人工神经网络可以检测,监测和量化作物损害。

在这篇文章中,科学家们利用Resonon Pika Ⅱ VNIR高光谱成像系统进行了相关的研究,旨在:

1)了解不同麦草畏喷雾比率下生理参数,产量和相应光谱响应的变化;

(2)确定适当的光谱特征,以评估麦草畏比率对植物的影响;

3)基于高光谱成像,使用机器学习算法建立模型,评估麦草畏比率。

111 

1 研究区域

田间试验于美国密西根州斯通维尔市农作物生产系统研究农场的美国农业部农业研究处4.5公顷的区域内进行。试验场布设如图1所示。大豆于2014年5月7日播种。2014年3月下旬,在实验区域的周围种植了玉米用于建立缓冲区,最大程度地减少麦草畏向/从邻近田间的喷洒漂移。

111 

2 结果

2.1 麦草畏引起的光谱响应和生理变化

比较不同麦草畏比率下大豆的平均光谱时,1WAT和3WAT的结果中都可以清楚地观察到有序变化模式(图5(A,B))。随着麦草畏比率的增加,绿色植被的一些典型光谱特征,如绿色峰值,红色山谷和红色边缘逐渐变得模糊。与未处理的对照样品相比,1WAT和3WAT上的光谱比曲线提供了清晰的光谱变化图,在480-510 nm和640-690 nm处有两个峰,在730 nm以上光谱比较低且变化平稳(图5(C,D ))。此外,可以看出,0.2X麦草畏比率是一个转折点,接受较低剂量的植物将恢复,而接受较高剂量(包括0.2X)的植物将变得衰弱。在1WAT时可以观察到0.05–0.1X样品与0.2–1.0X样品之间的光谱差异(图5(A)),而在3WAT时则更加清晰(图5(B))。

111 

2.2 区分可恢复和不可恢复的情况

0.05–0.1X样品和0.2–1.0X样品之间的JM距离和t检验的P值曲线(图6(A,B))显示了波段对麦草畏处理后大豆植株可恢复性的敏感性。图6(C)显示了基于1WAT和3WAT合并数据的JM距离。从中确定了三个最佳敏感波段,分别位于495、679和752 nm处,它们对应于JM距离曲线的光谱峰值。这些光谱值用于开发可恢复性指数。1和3WAT三个波段的t检验结果证实,0.05–0.1X样本和0.2–1.0X样本在统计学上具有显著性差异。如图6(C)所示,麦草畏处理的样品在495和679 nm处的反射率趋于明显增加,而在752nm处则降低。如图7所示,HDRI(除草剂破坏比指数)的临界值为2.89(1WAT)和2.58(3WAT),HDNI(除草剂破坏归一化指数)的临界值为2.15(1WAT)和2.82(3WAT)。根据验证样本,HDRI的可恢复和不可恢复样品的OA达到0.91(1WAT)和0.95(3WAT),而HDNI分别达到0.92(1WAT)和0.97(3WAT)。因此通过HIS分析可以将大豆植物的可恢复性和不可恢复性区分开。

111 

111 

2.3 通过光谱特征量化麦草畏比率


图8(A)显示了可恢复情况下,基于1和3WAT合并数据的0.05X样本和0.1X样本之间的JM距离和t检验的P值。在JM距离曲线的峰值处识别出三个敏感波段,分别位于409、516、684 nm处。波段的P<0.01,这样可以确保差异的统计显著性。对敏感性光谱特征进行以R2≤0.8为标准的互相关检查,共保留了八个敏感性光谱特征作为模型的输入变量:409和684nm,b,r,WID550-750,GI,TCARI和PSRI。

图8(B)显示了不可恢复情况下,Spearman相关系数的绝对值|R|以及相关分析的P值。在|R|曲线的峰值处确定了403、540和719 nm处的三个敏感波段。波段的P<0.01,确保了波段选择的有效性。同样地,根据敏感性分析和互相关检查,保留了七个敏感性光谱特征:403,719 nm,SDb,DEP550-750,WID550-750,PRI,MCARI。

111 

基于可恢复和不可恢复情况下选择的SFs,使用NB,GA-SVM和1WAT和3WAT上的RF建立了分类模型。除了仅基于SFs的模型外,还建立了同时包含SFs和植物Ht的综合模型。表2总结了两种模型在不同算法和特征组合下的OA和Kappa系数。可恢复情况模型的准确性显著高于不可恢复情况模型的准确性。与仅由SFs驱动的模型(以下称为SFs模型)相比,由SFs和Ht驱动的模型(以下称为SFs+Ht模型)显示出更高的准确性。 对于这三种算法,NB或RF在不同变量组合下显示出最高的准确性。

对于与可恢复情况相对应的模型,SFs模型的OA和Kappa系数在1WAT时范围分别为0.69–0.75和0.38–0.50,在3WAT时分别为0.56–0.69和0.13–0.38。SFs+Ht模型显示出更高的准确性,因为在1WAT时OA和Kappa分别为0.88–0.94和0.75–0.88,且在3WAT时三种算法均达到0.94(OA)和0.88(Kappa)。除了在1WAT时的SFs模型(NB算法准确性最高),其余均表现为RF优于其他两种算法。

对于与不可恢复情况相对应的模型,在1WAT时,SFs模型中OA和Kappa值从最高值分别降低到0.53和0.38,而在3WAT时,仅降低到0.38和0.17。SFs+Ht模型产生相对较高的准确性,在1WAT时,OA和Kappa值最高分别达到0.63和0.46,在3WAT时分别达到0.69和0.58。

111 

3 结论

(1)HIS可以清楚地捕捉到麦草畏喷雾造成的大豆伤害的光谱响应;

(2)通过除草剂可恢复性光谱指数—除草剂破坏比指数(HDRI)和除草剂破坏归一化指数(HDNI)可以准确地区分喷洒除草剂引起的可恢复和不可恢复的损害,总体准确度(OA)高于90%;

(3)使用最佳光谱特征集,可以确定可恢复和不可恢复情况下的麦草畏喷雾比率。在可恢复的情况下,光谱特征加上植物高度可以产生相对较高的精度(OA=94%)。


高光谱成像系统在评估农作物损害上的应用.pdf


News / 相关新闻 More
2022 - 09 - 23
作为气候变化的主要驱动力,CO2是最重要的长寿命温室气体,约贡献了66%的辐射强迫。自1956年以来,在美国夏威夷的莫纳洛亚山进行了大气CO2浓度首次长期观测,在全球大气监视网(GAW)计划下,迄今为止测量已扩展到约400个站。这些站点主要位于相对偏远地区,从区域到全球尺度上捕获CO2信号,以理解碳循环及其对气候变化的影响。然而,城市化和工业化区人为排放量占全球CO2排放量的70%以上。为扩大温室气体观测网,准确估算CO2通量,在GAW计划框架下,中国建立了8个国家温室气体监测站,并同时安装了大量城市站点,服务于碳中和战略和国内省际碳交易市场。长江三角洲地区是中国经济最发达、城市化最密集的地区,人为CO2排放受到高度的关注。基于此,在本文中,来自浙江工业大学环境学院的一组研究团队以长江三角洲典型城市杭州为研究对象,于2016.3.27-2020.12.31年对其大气CO2摩尔分数(Pica...
2022 - 09 - 09
土壤水(SW)是调节地表过程和地表能量分配的重要状态变量。由于与周围环境复杂的相互作用,SW存在显著的时空变化。近年来,随着测量技术的发展,SW稳定同位素组成(SWSIC;δD和δ18O)已越来越多地用于追踪土壤-植物-大气连续体中的SW运移,以更好地理解诸如量化SW停留时间、识别植物吸收水源和区分蒸腾和蒸发等相关过程。然而,由于受多种环境因素和过程的影响,如具有不同同位素组成的降水输入、土壤蒸发、土壤基质势梯度或矿物质-水相互作用造成的同位素分馏,SWSIC可能会随着时间和空间而显著变化,从而导致了在解释不同研究中SWSIC数据时存在很大的不确定性。因此,通过解释其时空变化格局及与其他因素(如土壤质地、土壤深度和植被)的相关性来改善SWSIC示踪技术至关重要。基于此,为更好地理解SWSIC的时空格局,在本研究中,来自天津大学的研究团队在中国科学院栾城农业生态系统试验站(LAEES)进行了...
2022 - 08 - 29
地下水是水文循环的重要组成部分,广泛用于饮用水、工农业活动以及战略储备。然而,人类活动的加剧(如水利工程建设、地下水过度开采、农药和生活污水排放)以及天然劣质地下水在大型流域中的广泛分布,导致地下水环境恶化。因此,水资源的合理管理和水环境的有效保护至关重要,基于地下水流系统(GFS)理论,全面理解地下水流模式(即更新速率、流径及演化趋势)有助于准确评估水文通量和预测污染物分布。汉江平原是长江流经三峡后第一个接收沉积物的大型河湖盆地。复杂的沉积环境、地下水-地表水强烈相互作用以及人为改造自然环境的共同作用,形成了汉江平原独特的GFS格局。了解汉江平原地下水循环演化及其控制机制,对于促进GFS的实际应用和该地区地下水资源保护具有高度紧迫性和挑战性。基于此,在本研究中,来自中国地质大学(武汉)的研究团队在汉江平原腹地和过渡区进行了相关研究,旨在:(1)基于沉积物粒度特征、粘土孔隙水稳定同位素和古...
2022 - 08 - 22
城市河流水资源是重要的生态资源,是城市生活和生态的根本保障。但是近年来,河流水污染问题日益突出,城市水污染监测、水体保护、生态系统健康动态监测以及修复方法已经成为研究热点。水质监测是水污染控制的基础。传统水质监测主要基于野外采样后的实验室检测和分析,由于空间布局和采样点密度限制,在分析污染物在水面的连续迁移过程或大面积污染时,难以获得反映整个水体生态环境的总时空数据。遥感技术因其快速、实时和非接触操作的独特优势,逐渐成为水质参数反演和水质监测的有效工具。其中,地面遥感监测技术以其小范围、高精度和点源信息获取等优点而取得较好效果。因此,该方法在小流域水质监测方面具有一定优势,可以实现河流水质单一指标的高精度定量反演。然而,基于地面遥感技术进行水质监测时,还存在以下问题亟待解决。一是反演水质指标过于简单,反演精度较低,无法充分反映河流水质信息。其次,常用的回归和反演模型种类繁多,但对相关算法应...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开