北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

日期: 2019-03-19
浏览次数: 251

M.K. Maid1*

, R.R. Deshmukh2

1*Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

2Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

*Corresponding Author: mm915monali@gmail.com 

Available online at: www.ijcseonline.org 


Abstract— Remote Sensing has wide range of applications in many different fields. Remote Sensing has been found to be a valuable tool in evaluation, monitoring, and management of land, water and crop resources. The applications of remote sensing techniques in the field of agriculture are wide and varied ranging from crop identification, detection of disease on different crops & predicting grain yield of crops. Many remote sensing applications are devoted to the agricultural sector. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. The application of remote sensing in agriculture typically involves measuring reflectance of electromagnetic radiation in the visible (390 to 770 nm), near-infrared (NIR, 770 to 1,300 nm), or middle-infrared (1,300 to 2,500 nm) ranges using spectrometers. This paper reviews the concept of hyperspectral remote sensing, use of remote sensing in terms of agriculture field, study of diseased wheat leaves using hyperspectral remote sensing.


Keywords—Remote Sensing, Wheat Leaf Rust, Vegetation Indices, ASD Fieldspec4 Spectroradiometer.

I. INTRODUCTION

Remote sensing refers to the activities of  recording/observing/perceiving (sensing) objects or events at  far away (remote) places. Remote sensing is a sub-field of  geography. In modern usage, the term generally refers to the use of aerial sensor technologies to detect and classify objects on Earth (both on the surface, and in the atmosphere and oceans) by means of propagated signals (e.g. electromagnetic radiation) [1]. The electromagnetic radiation is normally used as an information carrier in remote sensing. The reflection of that energy by earth surface materials is then measured to produce an image of the area sensed. Generally, Remote sensing can be done on two types of data namely imagery and non imagery. It can be done using different kinds of remote sensing devices like ASD fieldspec Spectroradiometer. Remote sensing have wide range of applications in various fields, among which Agriculture plays important role in our day to day life as not only in india but in many countries agriculture is their primary source of income and all human beings, animals and many industries are dependent on agriculture field. agriculture plays key macroeconomic roles in the 

industrialization of developing countries by relieving saving, aggregate demand, fiscal, and foreign exchange constraints on the industrial sector [2].

 In agriculture field winter wheat is one of the highest yielding crops on the farm [3]. Different climatic factors and disease symptoms affects the plant growth and it directly results in yield of crop. Rust are among the most important 

fungal diseases of wheat worldwide [4]. There are three types of rust diseases in wheat crop: Strip Rust, Leaf Rust, Stem Rust.

Wheat rusts are caused by three related fungi [5]: 

• Stripe rust is caused by Puccinia striiformis f. sp. tritici.

• Leaf rust is caused by Puccinia triticina.

• Stem rust is caused by Puccinia graminis f. sp. tritici.

This paper reviews the study of wheat leaf rust (WLR) disease using hyperspectral analysis, different vegetation indices and spectral signatures can be used to estimate the features of diseased and healthy crop. In this review paper ASD Fieldspec4 Spectroradiometer is used for data collection of diseased wheat leaves and healthy wheat leaves. Using different vegetation indices (VIs) biophysical and biochemical properties of crop can be estimated. 

II. BASICS OF REMOTE SENSING

Hyperspectral remote sensing is used for over 100 years for analysis of various objects and their chemical as well as biological composition. But hyperspectral sensor offers an alternate and nondestructive technique for analysis of 

physical and chemical properties of material. Remote sensing of vegetation is mainly performed by obtaining the electromagnetic wave reflectance information from canopies using passive sensors. It is well known that the reflectance of 

light spectra from plants changes with plant type, water content within tissues, and other intrinsic factors [6].

The reflectance from vegetation to the electromagnetic spectrum (spectral reflectance or emission characteristics of vegetation) is determined by chemical and morphological characteristics of the surface of organs or leaves [7]. 

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The main applications for remote sensing of vegetation are based on the following light spectra: (i) the ultraviolet region (UV), which goes from 10 to 380 nm; (ii) the visible spectra, which are composed of the blue (450–495 nm), green (495−570 nm), and red (620–750 nm) wavelength regions; and (iii) the near and mid infrared band (850–1700 nm)[9,10].

III. HYPERSPECTRAL REMOTE SENSING IN AGRICULTURE

Spectral data at the leaf and canopy scales have been utilized to improve the plant disease detection techniques from remotely sensed observations [11,12], where the visible and infrared regions are more sensitive to disease development [13]. The measured spectra can be utilized to early detection of fungus disease. Moreover, the optimized narrow bands vegetation indices were employed to discriminate various disease of wheat [14]. 

III.I Wheat Leaf Rust (WLR) Disease

The wheat rust is an important crop disease which has three types, i.e., wheat yellow rust (WYR), wheat leaf rust (WLR),and wheat stem rust [15]. 

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

WYR disease is identified by a single symptom which occurs as a narrow yellow stripes parallel to nervures on the leaf, whereas WLR disease is caused by the Puccinia triticina fungus and illustrates numerous symptoms simultaneously in various parts of an infected leaf [16]. The WLR symptoms vary from leaf to leaf but it presents a yellow color earlier, then its changes to orange and dark brown. Finally, the disease symptom ends with the dry leaf [17].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The effect of a disease on the pigments and structure of a plant and the change in their spectral responses enable spectroradiometry and remote sensing techniques to detect plant disease effectively [18].

Crop disease can cause significant yield loss and reduction of grain quality, which have a negative impact to food security around the world [19].

IV. EXPERIMENTAL SETUP

IV.I Data Collection

Field spec 4 spectrometer (Analytical spectral device, ASD Co. USA) shown in following figure having parameter details in Table 1. Spectrum data export in ASCII text, then it can analyze spectrum data with different software like ASD View Spec Pro. Unscramble and MATLAB/ Octave [20].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review


Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

V. VEGETATION INDICES FOR ESTIMATION OF WLRSYMPTOMS

Spectral data at different scales including leaf, canopy and landscape-level have been widely used to improve precision [21-24]. In recent years, researchers have studied various spectral vegetation indices (SVIs) to detect different 

vegetation diseases [24-26]. Efficient use of spectral data in detection of plant disease depends on the application. The spectral regions from 400 to 700 and 700 to 1100 are mainly influenced by leaf composition of pigments, structure, and 

water content [27]. The effect of a disease on the pigments and structure of a plant and the change in their spectral responses enable spectroradiometry and remote sensing techniques to detect plant disease effectively [28]. There are 

indices derived from reflectance values at several wavelengths that are able to detect and quantify the leaf content substances such as chlorophyll, anthocyanin, and water [29,30].

By using different types of vegetation indices estimation of biochemical and biophysical properties of crops is possible. Vegetation indices that are used by many researchers have shown in following table [31].


Table 2. Different Vegetation Indices

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

VI. CONCLUSION

As Remote Sensing technology growing rapidly in technological era and hyperspectral Remote sensing has wide number of applications not only in agriculture field but also in different industries which are dependent on agricultural area. With the help of different spectral characteristics like spectral signatures, vegetation indices, reflectance spectra we can use it for discrimination of crops. It can be used to study the severity of disease in crops, estimating the grain yield of crops, analysis and growth modulation of crop. 


ACKNOWLEDGMENT 

This work is supported by Dept. of Computer Science and Information Technology under the funds for Infrastructure under science and Technology (DST-FIST) with sanction no. SR/FST/ETI- 340/2013 to Dept. of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India. The authors would like to thank Department and University Authorities for providing the infrastructure and necessary 

support for carrying out the research. 


REFERENCES

[1] A. Chitradevi, S. Vijayalakshmi, “Random Forest for Multitemporal and Multiscale Classification of Remote Sensing Satellite Imagery”, International Journal of Computer Sciences and Engineering, Vol. 4, Issue.2, pp.59-65, 2016.

[2] D. Souza, “Growth Complementarity Between Agriculture and Industry: Evidence from a Panel of Developing Countries”, 2014.

[3] G. Boyle, “The Winter Wheat Guide”, Teagasc, pp. 21-40, 2016.

[4] S. N. Wegulo, “Rust Diseases of Wheat”, NebGuide, 2012.

[5] S. Markell, G. Milus, R. Cartwright, J. Hedge, “Rust Diseases of Wheat”, Agriculture and natural resources.

[6] L. Chang, S. Peng-Sen, and Liu Shi-Rong, “A review of plant spectral reflectance response to water physiological changes,” Chinese Journal of Plant Ecology, vol. 40, no. 1, pp. 80–91, 2016.

[7] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: a review,” Precision Agriculture, vol. 13, no. 6, pp. 693–712, 2012.

[8] J. B Campbell, “Introduction to Remote Sensing”, Taylor and Francis, London, 1996. 

[9] H. R. Bin Abdul Rahim, M. Q. Bin Lokman, S. W. Harun, “Applied light-side coupling with optimized spiral-patterned zinc oxide nanorod coatings for multiple optical channel alcohol vapor sensing,” Journal of Nanophotonics, vol. 10, no. 3, Article ID 036009, 2016.

[10] B. A. Cruden, D. Prabhu, and R. Martinez, “Absolute radiation measurement in venus and mars entry conditions,” Journal of Spacecraft and Rockets, vol. 49, no. 6, pp. 1069–1079, 2012.

[11] S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, “A review of advanced techniques for detecting plant diseases,” Comput. Electron. Agriculture, vol. 72, no. 1, pp. 1–13, 2010.

[12] C. Buschmann and E. Nagel, “In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation,” Int. J. Remote Sens, vol. 14, no. 4, pp. 711–722, 1993.

[13] N. K. Poona and R. Ismail, “Using Boruta-selected spectroscopic wavebands for the asymptomatic detection of Fusarium circinatum stress,” IEEE J. Select. Topics Appl. Earth Observations Remote Sens., vol. 7, no. 9, pp. 3764–3772, 2014.

[14] W. Huang, “New optimized spectral indices for identifying and monitoring winter wheat diseases,” IEEE J. Select. Topics Appl. Earth Observations Remote Sens., vol. 7, no. 6, pp. 2516–2524, 2014.

[15] M. D. Bolton, J. A. Kolmer, and D. F. Garvin, “Wheat leaf rust caused by Puccinia triticina,” Molecular Plant Pathology, vol. 9, no. 5, pp. 563–575, 2008.

[16] C. Robert, M.-O. Bancal, B. Ney, and C. Lannou, “Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status,” New Phytologist, vol. 165, no. 1, pp. 227–241, 2005.

[17] D. Ashourloo, H. Aghighi, A. A. Matkan, M. R. Mobasheri, and A. M. Rad, “An Investigation Into Machine Learning Regression Techniques For The Leaf Rust Disease Detection Using Hyperspectral Measurement”, IEEE journal of selected topics in applied earth observations and remote sensing, vol. 9, pp. 4344 – 4351, 2016.

[18] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J.H. Luo, “Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements”, Comput. Electron. Agric, pp. 13–23, 2012.

[19] R. N. Strange, P. R. Scott, “Plant Disease: A threat to global food security”, Annual reviews phytopathol, vol. 43, pp. 83-116, 2005.

[20] R. M. Misal, R. R. Deshmukh, “Application of Near-Infrared Spectrometer in Agro-Food Analysis: A Review”, International Journal of Computer Applications, Vol. 141 No.7, pp. 0975 – 8887, 2016.

[21] H.D Roelofsen, P. M. van Bodegom, L. Kooistra, , J. P.M. Witte, “Trait estimation in herbaceous plant assemblages from in situ canopy spectra” Remote Sens., Vol. 5, pp. 6323–6345, 2013.

[22] S. Delalieux, A. Auwerkerken, V.W. Verstraeten, B. Somers, R.Valcke, S.Lhermitte, J. Keulemanss, P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in Apple leaves”, Remote Sens, Vol. 1, pp. 858–874, 2009.

[23] U. Steiner, K. Bürling, E.C. Oerke, “Sensor use in plant protection”, Gesunde Pflanz, Vol. 60, pp. 131–141, 2008. 

[24] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J .Wang, “Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresse”,Field Crops Res., Vol. 134, pp.165–174,2012.

[25] C.Hillnhütter, A.K. Mahlein, R.A. Sikora, E.C. Oerke, “Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields”, Field Crops Res., Vol. 122, pp. 70–77, 2011. 

[26] D. Moshou, C. Bravo, J. West, S. Wahlen, A. McCartney, H. Ramon, “Automatic detection of ―yellow rust‖ in wheat using reflectance measurements and neural networks”, Comput. Electron. Agric, Vol. 44, pp. 173–188, 2004.

[27] A.K. Mahlein, T. Rumpf, P. Welke, H.W. Dehne, L. Plümer, U. Steiner, E.C. Oerke, “Development of spectral indices for detecting and identifying plant diseases”, Remote Sens. Environ, Vol. 128, pp. 21–30, 2013. 

[28] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L. Yuan, J.H. Luo, “Detecting powdery mildew of winter wheat using leaf level13–23, 2012. 

[29] A.A. Gitelson, Y.J. Kaufman, R. Stark, D. Rundquist, “Novel algorithms for remote estimation of vegetation fraction”, Remote Sens. Environ, Vol.80, pp. 76–87, 2002. 

[30] J. Penuelas, F. Baret, I. Filella, “Semiempirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance”, Photosynthetica, Vol. 31, pp. 221–230, 1995. 

[31] P. V. Janse, R. R. Deshmukh, “Hyperspectal Remote Sensing for Agriculture: A Review”, International Journal of Computer Applications,Vol.172 No.7, pp. 0975 – 8887, 2017.

[32] A. R. Huete, B. K. Liu, L. Van, “A comparison of vegetation indices over a global set of TM images for EOS-MODIS”, Remote Sensing of Environment, Vol. 59, pp. 440-451, 1997. 

[33] J.W. Rouse, R.H. Haas, J.A. Schell, D.W. Deering, “Monitoring vegetation systems in the great plains with ERTS, Third ERTS symposium”, NASA SP-351, NASA Washington, DC, Vol. 1, pp. 309-317, 1973. 

[34] C.F. Jorden, “Leaf area index from quality of light on the forest floor”, Ecology, Vol. 50(4), pp. 663-666, 1969. 

[35] B. Gao, “NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space”, Remote Sensing of Environment, Vol. 58, pp. 257-266, 1996. 

[36] J. Penuelas, J. Pinol, R. Ogaya, I. Lilella, “Estimation of plant water content by the reflectance water index WI (R900/ R970)”, International journal of remote sensing, Vol. 18, pp. 2869-2875, 1997. 

[37] Y. J. Kaufman, D. Tanier, “Atmospherically resistant vegetation index (ARVI) for EOS-MODIS”, IEEE Transaction on Geoscience and Remote Sensing, Vol. 30(2), pp. 261-270, 1992. 

[38] A.R. Huete, “A soil adjusted vegetation index (SAVI)”, Remote Sensing of Environment, Vol. 71, pp. 158-182, 2000. 

[39] A.A. Gitelson, Y. J. Kaufman, R. Stark, D. Rundquist, “Novel algorithm for remote estimation of vegetation fraction”, Remote Sensing of Environment, vol. 80, pp. 76-87, 2002. 

[40] J. Penuelas, F. Baret, I. Filella, “Semi empirical indices to assess carotenoids/ chlorophyll a ratio from leaf spectral reflectance”, Photosynthetica, Vol. 31, pp. 221-230, 1995. 

[41] G. A. Blackburn, “Spectral indices for estimating photosynthetic pigment concentration: A test using senescent tree leaves”, International journal of remote sensing, Vol. 19, pp. 657-675, 1998. 

[42] G. A. Blackburn, “Quantifying chlorophyll and carotenoids from leaf to canopy scale: An evaluation of some hyperspectral approaches”, Remote Sensing of Environment, Vol. 66, pp. 273-285, 1998. 

[43] M. N. Merzlyak, A. A. Gitelson, O. B. Chivkunova, Y. Ratikin, “Nondestructive optical detection of pigment changes during leaf senescent and fruit ripening”, Physiologia Plantarum, Vol. 105, pp. 135-141, 1999. 

[44] M. S. Kim, “The use of narrow spectral bands for improving remote sensing estimation of fractionally absorbed photosynthetically active radiation (fAPAR)”, Master Thesis, Department of Geography, University of Maryland, College Park, 1994. 

[45] C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. de Colstoun, J. E. McMurtrey, “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance”, Remote Sensing of Environment, Vol. 74, pp. 229-239, 2000. 

[46] A. A. Gitelson, G. P. Keydan, M. N. Merzlyak, “Three band model for noninvasive estimation of chlorophyll, carotenoids and anthocyanin contents in higher plant leaves”, Geophysical Research Letters, Vol. 33, L11402, 2006. 

[47] A. A. Gitelson, M. N. Merzlyak, O. B. Chivkunova, “Optical properties and non-destructive estimation of anthocyanin content in plant leaves”, Photochemistry and Photobiology, Vol. 74(1), pp. 38-45, 2001. 

[48] J. A. Gaman, J. S. Surfus, “Assessing leaf pigment content and activity with a reflectometer”, New Phytologist, Vol. 143, pp. 105-117, 1999. 

[49] A. K. Van Den Berg, T. D. Perkins, “Non-destructive estimation of anthocyanin content in autumn auger maple leaves”, Horticultural Science, vol. 40(3), pp. 685-685, 2005. 

[50] A. A. Gitelson, Y. Zur, O. B. Chivkunova, M. N. Merzlyak, “Assessing carotenoid content in plant leaves with reflectance spectroscopy, Photochemistry and Photobiology, Vol. 75(3), pp. 272-281, 2002. 

[51] A. R. Hunt, B. N. Rock, “Detection of changes in leaf water content using near- and middle-infrared reflectance”, Remote Sensing of Environment, Vol. 30, pp. 43-54, 1989. 

[52] B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, T. Hoshizaki, “Detection of forest damage”, BioScience, Vol. 36(7), pp. 439-445, 1986. 

[53] J. A. Gamon, L. Serrano, J. S. Surfus, “The photochemical reflectance index: An optical indicator of photosynthetic radiation-use efficiency across species, functional types, and nutrient level”, Oecologia, Vol. 112, pp. 492-501, 1997. 

[54] D. N. H. Horler, M. Dockray, J. Barber, “The red-edge of plant leaf reflectance”, International journal of remote sensing, Vol. 4, pp. 273-288, 1983. 




News / 相关新闻 More
2024 - 04 - 18
大兴安岭地处中国东北,这里的气候寒冷干燥,冬季漫长而严寒,夏季则短暂而凉爽,适宜白桦的生长。亭亭白桦,悠悠碧空,微微南来风。春天,是大兴安岭的白桦树复苏的季节。雪融水润,大地回春,在这神秘而美丽的土地上,白桦树以其独特的水分利用能力,展现出了大自然魅力。大兴安岭南部白桦的水分利用规律及其对干旱环境的适应性本研究旨在考察大兴安岭南部天然次生林中主要植物白桦(Betula platyphylla)的水分利用模式。该调查利用氧稳定同位素技术,时间跨度涵盖2019年7月至2020年9月。东北地区研究区的位置及其森林分布(绿色)。“其他”是指林地(灰色)以外的土地利用类型。在两年的时间里,在纯白桦林内建立的 30 m × 30 m 的样地内进行了季节性田间试验。作者选择了五棵健康的白桦木,其高度和胸径接近研究区域的平均值。样地土壤剖面较浅(厚度约为 40-70 厘米)土壤采样在每月中旬无雨...
2024 - 04 - 15
中国农业发生于新石器时代。中国农业的生产结构包括种植业、林业、畜牧业、渔业和副业;但数千年来一直以种植业为主。东北地区的黑土地,是宝贵的农业资源。黑土地的土壤富含有机质,深黑色的沃土,沉甸甸的感觉让人感受到这片土地的肥沃。在现代农业生产中,科技的应用在这片沃土上也发挥着至关重要的作用,科研团队利用机载高光谱对黑土地的土壤有机质做了相关研究。使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘快速获取田间尺度土壤有机质(SOM)的高分辨率空间分布对于精准农业至关重要。无人机成像高光谱技术以其高空间分辨率和时效性,可以填补地面监测和遥感的研究空白。本研究旨在测试在中国东北典型低地势黑土地区使用无人机高光谱数据(400–1000 nm)和小型校准样本集进行1 m分辨率SOM绘图的可行性。该实验在大约20公顷的土地上进行。为了进行校准,使用 100 × 100 m 网格采...
2024 - 03 - 04
有机蔬菜,是指在蔬菜生产过程中严格按照有机生产规程,禁止使用任何化学合成的农药、化肥、生长调节剂等化学物质,以及基因工程生物及其产物,而是遵循自然规律和生态学原理,采取一系列可持续发展的农业技术,协调种植平衡,维持农业生态系统持续稳定,且经过有机食品认证机构鉴定认证,并颁发有机食品证书的蔬菜产品。关于如何快速鉴别有机蔬菜与非有机蔬菜,光谱仪器的应用提供了新的思路。一起来了解一下今日推荐的文章。使用 VIS-NIR 光谱仪通过特征波长和线性判别分析法快速区分有机和非有机叶菜(空心菜、苋菜、生菜和小白菜)当前有机叶类蔬菜面临着可能被非有机产品替代以及容易脱水和变质的挑战。为了解决这些问题,本研究采用ASD FieldSpec 4 便携式地物光谱仪 结合线性判别分析 (LDA) 来快速区分有机和非有机叶菜。有机类包括有机空心菜 (Ipomoea Aquatica Forsskal)、苋菜 (Am...
2024 - 02 - 28
微塑料是指直径小于5毫米的塑料颗粒,它们主要来源于塑料制品的磨损、降解和破碎,对环境和生态系统产生了不容忽视的影响。微塑料广泛分布在河流、湖泊、海洋等水体中,对水环境会造成污染,也可被水生生物摄取,进而在食物链中传递,最终影响到人类健康。此外,微塑料还可能影响浮游动物的摄食、生长和繁殖,从而影响整个生态系统的功能。针对微塑料是否会影响生物扰动活动,国外的一组团队展开了研究。淡水沉积物中的微塑料影响主要生物扰动者在生态系统功能中的作用 微塑料(粒径≤5mm)是塑料废物中的一部分,会通过沿海径流和河流进入到海洋。根据其密度差异,或漂浮在水中或进入沉积物中。沉积物-水界面是水中生物主要活动区,通过生物地球化学过程在生态系统功能中发挥着重要作用。这些生物地球化学过程主要由微生物活动驱动,而底栖无脊椎动物生物扰动作用明显,可凭借进食、排泄、推土、掘穴以及建造洞穴、土堆和坑等行为影响各界面间...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开