北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
新闻资讯 News
News 新闻详情

科研助力 | 探索土壤碳循环的奥秘 LICA 土壤呼吸监测系统助力前沿科研

日期: 2025-04-14
浏览次数: 68


科研助力 | 探索土壤碳循环的奥秘 LICA 土壤呼吸监测系统助力前沿科研



土壤呼吸是陆地生态系统碳通量的重要环节,对全球碳循环和气候变化研究具有决定性影响。如何精准测量CO2、CH4、N2O等温室气体通量?如何在极端环境中实现长期、稳定、高精度监测?

How to achieve long-term, stable, and high-precision monitoring in extreme environments?

科研助力 | 探索土壤碳循环的奥秘 LICA 土壤呼吸监测系统助力前沿科研

PS-9000便携式土壤碳通量自动测量系统


理加联合(LICA)凭借16年技术深耕,推出 SF-3000/3500、PS-9000、PS-3000、PS-3010 等一系列土壤呼吸监测系统销量突破 539 套,2287 台呼吸室(截至 2024 年底),国内外研究机构与高校广泛使用,论文发表覆盖nature communication、Journal of Environmental Management、Science of the Total Environment等期刊!


科研助力 | 探索土壤碳循环的奥秘 LICA 土壤呼吸监测系统助力前沿科研




SF-3500 系列多通道土壤气体通量测量系统


科研助力 | 探索土壤碳循环的奥秘 LICA 土壤呼吸监测系统助力前沿科研




PS-3010超便携CH4/CO2土壤呼吸系统


科研信赖——部分文献


  1. Zhang, R.; Qu, Z.; Yang, W.; Wang, L.; Zhang, D.; Liu, L.; Li, J.; Zhang, Z. Biochar Addition Enhances Annual Carbon Stocks and Ecosystem Carbon Sink Intensity in Saline Soils of the Hetao Irrigation District, Inner Mongolia. Plant Soil Environ. 2024, 70 (5), 263–275. https://doi.org/10.17221/121/2023-PSE.
  2. Xu, Y.; Liao, B.; Jiang, Z.; Xin, K.; Xiong, Y.; Guan, W. Emission of Greenhouse Gases (CHand CO2) into the Atmosphere from Restored Mangrove Soil in South China. Journal of Coastal Research 2020, 37 (1). https://doi.org/10.2112/JCOASTRES-D-20-00054.1.
  3. Zhang, R.; Qu, Z.; Yang, W.; Li, J.; Wang, L.; Liu, Q.; Zhang, D.; Qiao, T.; Zhao, Y. Evaluating Annual Soil Carbon Emissions under Biochar-Added Farmland Subjecting from Freeze-Thaw Cycle. Journal of Environmental Management 2024, 365, 121506. https://doi.org/10.1016/j.jenvman.2024.121506.
  4. Zhang, R.; Qu, Z.; Liu, L.; Yang, W.; Wang, L.; Li, J.; Zhang, D. Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere 2022, 13 (12), 2038. https://doi.org/10.3390/atmos13122038.
  5. Li, Y.; Wang, G.; Bing, H.; Wang, T.; Huang, K.; Song, C.; Chen, X.; Hu, Z.; Rui, P.; Song, X.; Chang, R. Watershed Scale Patterns and Controlling Factors of Ecosystem Respiration and Methane Fluxes in a Tibetan Alpine Grassland. Agricultural and Forest Meteorology 2021, 306, 108451. https://doi.org/10.1016/j.agrformet.2021.108451. 
  6. Wang, P.; Ouyang, W.; Zhu, W.; Cui, X.; Wang, J.; Lin, C. Dissolved Organic Matter Movements from Forests Influence Downstream Soil CO2 Flux during Thawing. CATENA 2023, 233, 107497. https://doi.org/10.1016/j.catena.2023.107497.
  7. Ouyang, W.; Wang, P.; Liu, S.; Hao, X.; Wu, Z.; Cui, X.; Jin, R.; Zhu, W.; Lin, C. Rainfall Stimulates Large Carbon Dioxide Emission during Growing Season in a Forest Wetland Catchment. Journal of Hydrology 2021, 602, 126892. https://doi.org/10.1016/j.jhydrol.2021.126892.
  8. Shang, X.; Gao, T.; Yao, T.; Zhang, Y.; Zhao, Y.; Zhao, Y.; Luo, X.; Chen, R.; Kang, S. Riverine Carbon Dioxide Release in the Headwater Region of the Qilian Mountains, Northern China. Journal of Hydrology 2024, 632, 130832. https://doi.org/10.1016/j.jhydrol.2024.130832.
  9. Guan, X.; Zhang, Y.; Niu, H.; Shi, P.; Cao, M.; Zu, P.; Xu, D.; Zhao, Q.; Wang, B.; Cui, L.; Gómez, J. A. Seasonal Evolution of Soil Respiration and Sources of Respirable Carbon in Three Forest Stands on the Loess Plateau of China. Land Degrad Dev 2024, 35 (18), 5701–5712. https://doi.org/10.1002/ldr.5325.
  10. Fan, L.; Cheng, J.; Xie, Y.; Xu, L.; Buttler, A.; Wu, Y.; Fan, H.; Wu, Y. Spatio-Temporal Patterns and Drivers of CH4 and CO2 Fluxes from Rivers and Lakes in Highly Urbanized Areas. Science of The Total Environment 2024, 918, 170689. https://doi.org/10.1016/j.scitotenv.2024.170689.
  11. (Meng, Y.; Li, P.; Liu, X.; Xiao, L.; Liu, J.; Zhang, C.; Yang, S.; Zhang, X.; Wang, Y.; Wang, B. Variability in the Home-Field Advantage of Litter Decomposition Mediates Alterations in Soil CO2 and CH4 Fluxes: A Transplantation Experiment Study. Science of The Total Environment 2024, 951, 175685. https://doi.org/10.1016/j.scitotenv.2024.175685.
  12. Wang, P.; Ouyang, W.; Zhu, W.; Geng, F.; Tulcan, R. X. S.; Lin, C. Wetland Soil Carbon Dioxide Emission Dynamics with External Dissolved Organic Matter in Mid–High-Latitude Forested Watershed. Agricultural and Forest Meteorology 2023, 333, 109381. https://doi.org/10.1016/j.agrformet.2023.109381.
  13. Yan, Z.; Kang, E.; Zhang, K.; Hao, Y.; Wang, X.; Li, Y.; Li, M.; Wu, H.; Zhang, X.; Yan, L.; Zhang, W.; Li, J.; Yang, A.; Niu, Y.; Kang, X. Asynchronous Responses of Microbial CAZymes Genes and the Net CO2 Exchange in Alpine Peatland Following 5 Years of Continuous Extreme Drought Events. ISME Communications 2022, 2 (1), 115. https://doi.org/10.1038/s43705-022-00200-w.
  14. Zhuang, W.; Li, Y.; Kang, X.; Yan, L.; Zhang, X.; Yan, Z.; Zhang, K.; Yang, A.; Niu, Y.; Yu, X.; Wang, H.; An, M.; Che, R. Changes in Soil Oxidase Activity Induced by Microbial Life History Strategies Mediate the Soil Heterotrophic Respiration Response to Drought and Nitrogen Enrichment. Front. Microbiol. 2024, 15, 1375300. https://doi.org/10.3389/fmicb.2024.1375300.
  15. Qi, S.; Yang, S.; Yu, W.; Hu, J.; Ma, C.; Jiang, Z.; Qiu, H.; Xu, Y. CO2 Fluxes Over Water-Saving Paddy Fields with Different Straw Management Methods on the Basis of the Same Amount of Carbon Input. J Soil Sci Plant Nutr 2024, 24 (2), 2577–2588. https://doi.org/10.1007/s42729-024-01679-z.
  16. Yu, X.; Hao, Y.; Yan, Z.; Li, Y.; Yang, A.; Niu, Y.; Liu, J.; Kang, E.; Zhang, K.; Yan, L.; Zhuang, W.; Zhang, X.; Kang, X. Effects of Gradient Warming on Carbon and Water Fluxes in Zoige Plateau Peatland. Water 2025, 17 (2), 241. https://doi.org/10.3390/w17020241.
  17. Kang, E.; Li, Y.; Zhang, X.; Yan, Z.; Zhang, W.; Zhang, K.; Yan, L.; Wu, H.; Li, M.; Niu, Y.; Yang, A.; Wang, J.; Kang, X. Extreme Drought Decreases Soil Heterotrophic Respiration but Not Methane Flux by Modifying the Abundance of Soil Microbial Functional Groups in Alpine Peatland. CATENA 2022, 212, 106043. https://doi.org/10.1016/j.catena.2022.106043.
  18. Yan, Z.; Wang, J.; Liu, Y.; You, Z.; Zhang, J.; Guo, F.; Gao, H.; Li, L.; Wan, S. Maize/Peanut Intercropping Reduces Carbon Footprint Size and Improves Net Ecosystem Economic Benefits in the Huang-Huai-Hai Region: A Four-Year Study. Agronomy 2023, 13 (5), 1343. https://doi.org/10.3390/agronomy13051343.
  19. Yan, Z.; Kang, E.; Zhang, K.; Li, Y.; Hao, Y.; Wu, H.; Li, M.; Zhang, X.; Wang, J.; Yan, L.; Kang, X. Plant and Soil Enzyme Activities Regulate CO2 Efflux in Alpine Peatlands After 5 Years of Simulated Extreme Drought. Front. Plant Sci. 2021, 12, 756956. https://doi.org/10.3389/fpls.2021.756956.
  20. Wang, X.; Li, Y.; Hao, Y.; Kang, E.; Han, J.; Zhang, X.; Li, M.; Zhang, K.; Yan, L.; Yang, A.; Niu, Y.; Kang, X.; Yan, Z. Soil Temperature and Fungal Diversity Jointly Modulate Soil Heterotrophic Respiration under Short-Term Warming in the Zoige Alpine Peatland. Journal of Environmental Management 2024, 370, 122778. https://doi.org/10.1016/j.jenvman.2024.122778.
  21. Chen, Y.; Qin, W.; Zhang, Q.; Wang, X.; Feng, J.; Han, M.; Hou, Y.; Zhao, H.; Zhang, Z.; He, J.-S.; Torn, M. S.; Zhu, B. Whole-Soil Warming Leads to Substantial Soil Carbon Emission in an Alpine Grassland. Nat Commun 2024, 15 (1), 4489. https://doi.org/10.1038/s41467-024-48736-w.
  22. Chen, Y.; Qin, W.; Zhang, Q.; Wang, X.; Feng, J.; Han, M.; Hou, Y.; Zhao, H.; Zhang, Z.; He, J.-S.; Torn, M. S.; Zhu, B. Whole-Soil Warming Leads to Substantial Soil Carbon Emission in an Alpine Grassland. Nat Commun 2024, 15 (1), 4489. https://doi.org/10.1038/s41467-024-48736-w.
  23. Chen, Y., Qin, W., Zhang, Q. et al. Whole-soil warming leads to substantial soil carbon emission in an alpine grassland. Nat Commun 15, 4489 (2024). https://doi.org/10.1038/s41467-024-48736-w
  24. Ma, L.; Zhong, M.; Zhu, Y.; Yang, H.; Johnson, D. A.; Rong, Y. Annual Methane Budgets of Sheep Grazing Systems Were Regulated by Grazing Intensities in the Temperate Continental Steppe: A Two-Year Case Study. Atmospheric Environment 2018, 174, 66–75. https://doi.org/10.1016/j.atmosenv.2017.11.024.
  25. Li, S.; Ma, Q.; Zhou, C.; Yu, W.; Shangguan, Z. Applying Biochar under Topsoil Facilitates Soil Carbon Sequestration: A Case Study in a Dryland Agricultural System on the Loess Plateau. Geoderma 2021, 403, 115186. https://doi.org/10.1016/j.geoderma.2021.115186.
  26. Dong, Q.; Liu, Y.; He, P.; Du, W. Belowground Biomass Changed the Regulatory Factors of Soil N2O Funder N and Water Additions in a Temperate Steppe of Inner Mongolia. J Soil Sci Plant Nutr 2024, 24 (1), 606–617. https://doi.org/10.1007/s42729-023-01569-w.
  27. Jing-jing, Z.; Jin-song, Z.; Ping, M.; Ning, Z.; Jian-xia, L. Change of Soil CH4 Fluxes of Robinia Pseudoacacia Stand During Non-Growing Season and the Impact Factors.
  28. Yang, L.; Zhang, Q.; Jin, H.; Ma, Z.; Jin, X.; Marchenko, S. S.; He, R.; Spektor, V. V.; Chang, X. CO2 and CH4 Fluxes from Forest Soil in the Northern Da Xing’anling Mountains in Northeast China during the Freezing and Thawing Periods of near-Surface Soil in 2018–2019. Scandinavian Journal of Forest Research 2023, 38 (4), 275–285. https://doi.org/10.1080/02827581.2023.2208874.
  29. Su, C.; Kang, R.; Huang, W.; Wang, A.; Li, X.; Huang, K.; Zhou, Q.; Fang, Y. CO2 Removal with Enhanced Wollastonite Weathering in Acidic and Calcareous Soils. Soil Ecol. Lett. 2025, 7 (1), 240273. https://doi.org/10.1007/s42832-024-0273-z.
  30. Xu, X.; Wu, H.; Yue, J.; Tang, S.; Cheng, W. Effects of Snow Cover on Carbon Dioxide Emissions and Their δ13C Values of Temperate Forest Soils with and without Litter. Forests 2023, 14 (7), 1384. https://doi.org/10.3390/f14071384.
  31. Pan, Z.; Wei, Z.; Ma, L.; Rong, Y. Effects of Various Stocking Rates on Grassland Soil Respiration during the Non-Growing Season. Acta Ecologica Sinica 2016, 36 (6), 411–416. https://doi.org/10.1016/j.chnaes.2016.09.004.
  32. Qu, S.; Xu-Ri; Yu, J.; Borjigidai, A. Extensive Atmospheric Methane Consumption by Alpine Forests on Tibetan Plateau. Agricultural and Forest Meteorology 2023, 339, 109589. https://doi.org/10.1016/j.agrformet.2023.109589.
  33. Li, X.; Quan, Z.; Huang, K.; Kang, R.; Su, C.; Liu, D.; Ma, J.; Chen, X.; Fang, Y. High Soil Nitrous Oxide Emissions from a Greenhouse Vegetable Production System in Shouguang, Northern China. Atmospheric Environment 2024, 319, 120264. https://doi.org/10.1016/j.atmosenv.2023.120264.
  34. Rong, Y.; Ma, L.; Johnson, D. A. Methane Uptake by Four Land-Use Types in the Agro-Pastoral Region of Northern China. Atmospheric Environment 2015, 116, 12–21. https://doi.org/10.1016/j.atmosenv.2015.06.003.
  35. Shu, Y.; Chuying, G.; Jiayin, H.; Leiming, Z.; Guanhua, D.; Xuefa, W.; Guirui, Y. Modelling Soil Greenhouse Gas Fluxes from a Broad-Leaved Korean Pine Forest in Changbai Mountain: Forest-DNDC Model Validation.
  36. Ren, S.; Liu, Y.; He, P.; Zhao, Y.; Wang, C. Nitrogen and Water Additions Affect N2O Dynamics in Temperate Steppe by Regulating Soil Matrix and Microbial Abundance. Agriculture 2025, 15 (3), 283. https://doi.org/10.3390/agriculture15030283.
  37. Pan, Z.; Johnson, D. A.; Wei, Z.; Ma, L.; Rong, Y. Non-Growing Season Soil CO2 Efflux Patterns in Five Land-Use Types in Northern China. Atmospheric Environment 2016, 144, 160–167. https://doi.org/10.1016/j.atmosenv.2016.08.085.
  38. Yang, L.; Zhang, Q.; Ma, Z.; Jin, H.; Chang, X.; Marchenko, S. S.; Spektor, V. V. Seasonal Variations in Temperature Sensitivity of Soil Respiration in a Larch Forest in the Northern Daxing’an Mountains in Northeast China. J. For. Res. 2022, 33 (3), 1061–1070. https://doi.org/10.1007/s11676-021-01346-4.
  39. Zhang, J.; He, P.; Liu, Y.; Du, W.; Jing, H.; Nie, C. Soil Properties and Microbial Abundance Explain Variations in N2O Fluxes from Temperate Steppe Soil Treated with Nitrogen and Water in Inner Mongolia, China. Applied Soil Ecology 2021, 165, 103984. https://doi.org/10.1016/j.apsoil.2021.103984.
  40. Rong, Y.; Ma, L.; Johnson, D. A.; Yuan, F. Soil Respiration Patterns for Four Major Land-Use Types of the Agro-Pastoral Region of Northern China. Agriculture, Ecosystems & Environment 2015, 213, 142–150. https://doi.org/10.1016/j.agee.2015.08.002.
  41. Wang, Q.; Shi, J.; Wang, J.; Pan, J.; Ma, F.; Zhang, R.; Tian, D.; Liu, N.; Zhou, R.; Gao, Z.; Liu, M.; Shi, R.; Niu, S. Threshold Response of Arbuscular Mycorrhizal Mycelial Respiration to a Nitrogen Addition Gradient in an Alpine Grassland. Functional Ecology 2025, 1365-2435.70033. https://doi.org/10.1111/1365-2435.70033.
  42. Zhang, Y.; Naafs, B. D. A.; Huang, X.; Song, Q.; Xue, J.; Wang, R.; Zhao, M.; Evershed, R. P.; Pancost, R. D.; Xie, S. Variations in Wetland Hydrology Drive Rapid Changes in the Microbial Community, Carbon Metabolic Activity, and Greenhouse Gas Fluxes. Geochimica et Cosmochimica Acta 2022, 317, 269–285. https://doi.org/10.1016/j.gca.2021.11.014.
  43. Jia, Z.; Li, P.; Wu, Y.; Yang, S.; Wang, C.; Wang, B.; Yang, L.; Wang, X.; Li, J.; Peng, Z.; Guo, L.; Liu, W.; Liu, L. Deepened Snow Cover Alters Biotic and Abiotic Controls on Nitrogen Loss during Non-Growing Season in Temperate Grasslands. Biol Fertil Soils 2021, 57 (2), 165–177. https://doi.org/10.1007/s00374-020-01514-4.
  44. Wang, J.; Quan, Q.; Chen, W.; Tian, D.; Ciais, P.; Crowther, T. W.; Mack, M. C.; Poulter, B.; Tian, H.; Luo, Y.; Wen, X.; Yu, G.; Niu, S. Increased CO2 Emissions Surpass Reductions of Non-CO2 Emissions More under Higher Experimental Warming in an Alpine Meadow. Science of The Total Environment 2021, 769, 144559. https://doi.org/10.1016/j.scitotenv.2020.144559.
  45. Xue-Yuan Z.; Cui-Ping G.; Jing-Lei T.; Yi Z.; Lei T.; Guo-Dong H.; Hai-Yan R.; Key Laboratory of Grassland Resources of the Ministry of Education, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China. Responses of soil CH4 and CO2 flux to warming and nitrogen addition during freeze-thaw cycles in a desert steppe of Nei Mongol, China. Chinese Journal of Plant Ecology 2024, 48 (10), 1291–1301. https://doi.org/10.17521/cjpe.2024.0040.

......


产品对比一览表


产品型号

适用场景

主要优势

SF-3000

SF-3500

长期固定

监测

多参数高精度测量、长期稳定运行,适应极端环境,智能远程

PS-9000

便携式监测

用于测量土壤CO2通量,操控轻便灵活,适合短期实验

PS-3000

PS-3010

便携式监测

超便携土壤/水面 CH4/CO2通量测量,易于野外携带和操作;设计独特,测量结果更准确。


关注“理加联合”公众号,回复“文献”获取相关产品文献


理加优秀科研成果支持基金

奖励基金名称


理加优秀科研成果支持基金

目的与意义


北京理加联合科技有限公司是一家专注于生态环境科学研究的专业公司。我们代理、研发、生产和销售高品质的生态环境仪器,并为客户提供卓越的售后服务。为了更好地支持科研人员的科研与创新工作,同时提升企业在科研服务与社会回馈方面的品牌形象,我们于2021年设立了为期三年的公益性质的第一期奖励基金,取得了良好的公益成果,为科研服务贡献了一份微薄的力量。为了更好的服务和回馈社会,现决定设立第二期奖励基金。

奖励期限


三年(2025-2027年)

奖励办法及奖励条件


1. 使用理加公司自主研发生产的仪器,并在文章中明确注明仪器生产厂家、名称及型号(要求详见第五条);
2. 文章需在奖励期限(2025-2027年)内发表;
3. 文章要求:限中文核心期刊及 SCI 收录期刊;
4. 本奖金奖励文章的第一作者,由第一作者申请本奖金,如有多个共同第一作者,请自行协调奖金归属和分配事宜;
5. 奖励标准:
1) 国内核心期刊1000元/篇;
2) SCI收录期刊:影响因子10以下(不含 10),奖励2000元/篇;影响因子10及以上,奖励 5000 元/篇;
3) 中文核心期刊目录及 SCI 影响因子,以上一年度公布的数据为准;
4) 文章见刊为准;

奖励产品型号及公司名称


(一)本基金适用于 LICA 自主研发生产的以下产品:
1.LI-2100全自动真空抽提系统/ LI-2100 Automatic Cryogenic Vacuum Distillation Water Extraction System
2.LI-2200全自动真空抽提系统/ LI-2200 Automatic Cryogenic Vacuum Distillation Water Extraction System
3.SF-3500/SF-9000/PS-9600/PS-3000系列/PS-9000/PS-2000系列土壤温室气体通量监测系统/ Soil Greenhouse Gas Flux Monitoring System
4.IRIS激光雷达高光谱机载系统/ LR1601高光谱一体机 LR1601 Airborne Hyperspectral Lidar Combined System/ 300L2高光谱机载系统 300L2 Aieborne Hyperspectral System/ 300TC高光谱机载系统 300TC Airborne Hyperspectral Compact System
5.IRIS植物表型测量系统/HPPA高光谱植物表型系统 Hyperspectral Plant Phenotype System
6.IRIS日光诱导叶绿素荧光观测系统/ iSIF Solar induced fluorescence monitoring system
7. HS1000/HS2000高光谱传感器/ Hyperspectral Sensor

(二)公司名称:

北京理加联合科技有限公司
Beijing LICA United Technology Limited.

奖励产品型号及公司名称


文章第一作者提交申请,经奖励基金评审组评审通过后,奖金将在一个月内发放。

其它事项


1. 获奖者须自行承担相应的所得税;
2. 该政策解释权归本公司所有。



News / 相关新闻 More
2025 - 07 - 14
7月3日至6日,第七届全国定量遥感学术论坛在吉林省长春市隆重召开。本次论坛以“定量遥感赋能新质生产力”为核心主题,汇聚国内定量遥感领域顶尖专家学者,围绕理论创新、技术突破、工程应用等关键议题展开深入研讨,旨在推动学科前沿进展与产学研融合创新,为行业高质量发展注入新动能。 论坛由中国遥感应用协会指导,中国遥感应用协会定量遥感专业委员会、遥感与数字地球全国重点实验室联合主办,吉林大学、中国科学院东北地理与农业生态研究所承办,遥感卫星应用国家工程研究中心、测绘遥感信息工程全国重点实验室等20余家单位协办,并得到《Geo-Spatial Information Science》《遥感学报》等国内外知名期刊支持。 开幕式上举行了“李小文遥感奖”颁奖仪式,表彰在遥感科学与应用领域作出突出贡献的学者;闭幕式公布了优秀论文评选结果,激励青年科研人员创新活力。本次论坛阵容空前。学术委员会由中国科学院院士徐冠...
2025 - 07 - 04
为进一步促进高光谱遥感技术在多学科领域的交流与融合,展示前沿科研成果与最新应用进展,“2025年高光谱测量技术及应用学术交流会”将于2025年8月18日举办。本次会议将继续围绕高光谱遥感基础理论、技术发展与应用实践等内容,邀请领域内知名专家学者进行专题报告与经验分享,助力科研人员拓展视野、深化合作。会议背景高光谱遥感技术作为遥感科学的重要分支,因其丰富的光谱信息获取能力,已在农业、林业、生态环境、土壤科学、水色遥感、大气监测、材料识别等诸多领域展现出重要价值。通过对连续细致的光谱信息进行采集和分析,高光谱遥感不仅提升了地物识别的精度,还为科研工作者提供了多维度的数据支撑。近年来,随着仪器性能提升、数据处理算法进步及多源数据融合技术的发展,高光谱遥感的应用边界不断拓展。为此,本次交流会旨在搭建开放共享的平台,聚焦高光谱测量领域的热点问题与实践经验,推动该技术在更广泛场景中的创新应用。会议时间...
2025 - 06 - 16
怀着激动的心情,理加联合 2025 年中旅行,正式拉开帷幕! 上半年,我们携手跨越挑战,用智慧与汗水书写属于团队的精彩篇章。公司深知,每一份成绩背后,都凝聚着大家的付出与坚持。 年中旅游不仅是一场放松身心的治愈之旅,更是为了感谢员工们的辛勤付出、丰富员工文化生活、激发工作热情,希望借此让大家卸下疲惫,在山水之间重焕活力,以更饱满的状态迎接下半年的征程! 此次,我们的目的地是有着“十三朝古都”美誉的长安城 —— 西安,并将在那里与西安分公司的小伙伴们会合,一同探寻这座历史古城的魅力。 共赴西安,Let's go请问去西安要做的第一件事情是什么?吃凉皮肉夹馍?还是看兵马俑?正确答案是:坐火车 本次旅途去程公司安排了一等软卧,美好的旅途,在上火车这一刻就已经开始了! 伴着火车哐当声,一夜摇晃而过。清晨阳光刚爬上车窗,“前方到达西安站”的广播声响起,同事们瞬间打起精神,西安我们来啦!肉夹...
2025 - 06 - 16
6月3日至5日,2025年度遥感地面观测联盟年会在吉林省长春市隆重举行。本次会议由中国遥感应用协会定量遥感专业委员会、遥感地面观测联盟共同主办,中国科学院东北地理与农业生态研究所联合中国科学院长春净月潭遥感实验站承办。来自全国遥感领域的知名专家学者、科研工作者及行业代表参加本次会议,围绕遥感地面观测技术发展、应用创新与未来规划等议题展开深入研讨与交流。会议开幕式由中国科学院长春净月潭遥感实验站站长李晓峰研究员主持。中国科学院科技基础能力局副局长苏奋振、中国科学院东北地理与农业生态研究所副所长李禄军致辞,为会议拉开序幕。定量遥感专委会主任、中国科学院空天信息创新研究院柳钦火研究员受邀出席。会议期间,14个成员站汇报2024年工作并分享野外观测经验。与会代表围绕定量遥感组网观测与数据共享展开研讨,就2025年重点工作达成共识:推进共享网站建设、开展联合实验、制定观测规范、深化数据共享,助力联盟...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开