在2020年9月,由美国夏威夷的Pan-STARRS1望远镜发现了一颗疑似地球的临时卫星,为地月系统带来了一颗新的天体。起初,科学家们认为它是一颗普通的阿波罗小行星,即轨道穿过地球的天体,并将其命名为2020SO。然而,模拟结果显示,它将在10月变成一个绕地球公转的小天体,成为一个迷你月球。随后的观察结果则让天文学家更加困惑。科学家们发现,这颗神秘的天体每年围绕太阳公转一周,其轨道偏心率与地球的公转轨道非常相似。天体在太空中的运动非常复杂,小天体容易受到大天体引力的扰动,因此其运动规律也十分复杂。但是因为它们与地球的相似性,反而显得更加神秘。不仅如此,2020SO的运行速度也比普通的小行星慢,这一点与其他小行星有显著的不同。由于这些原因,科学家们开始重新思考2020SO的真实身份。2020 年 11 月至 2021 年 3 月 2020 SO 绕地球和太阳的轨道澳大利亚弗林德斯大学的太空考古学家Alice Gorman表示,通过它的运行速度可以推断出其初始速度,从而推断出它的来源。现有的速度太慢,这让科学家们感到困惑。Gorman和她的同事还推测,2020SO可能是一块从月球上掉下来的岩石。对于这样的天体,速度慢一点是正常的。然而,实际观测表明,2020SO比这类天体还要慢。在排除了其他可能性后,科学家们提出了一个最不可能但又唯一剩下的猜想:2020SO是一颗人造天体!根据其轨道的...
发布时间:
2024
-
10
-
14
浏览次数:0
沿海盐沼生态系统是一种位于海洋与陆地交界处的生物多样性丰富的独特生态环境。它不仅具有重要的生态功能,在碳储存、环境净化和防风护堤方面发挥着重要作用,还对人类社会活动有着极大的支持和调节作用。氨气是大气环境中含量丰富的碱性气体,其在沿海盐沼生态系统中的作用不可忽视。但是,过量的氨气输入也给其带来了一系列问题。沿海盐沼生态系统NH3源和汇研究背景介绍氨(NH3)是大气中含量最多的碱性气体。在气溶胶形成中发挥重要作用,而气溶胶会对人类健康产生不利影响,同时会降低能见度,改变地球辐射平衡,并通过大气沉积促进活性氮(Nr)的全球再分配。农业集约化是NH3的主要人为来源,导致进入生物圈的Nr增加一倍。NH3的其他来源包括工业过程、车辆排放及土壤和海洋的挥发。农业和城市源通过大气沉积过程直接或间接排放NH3,其会改变盐沼的结构和功能。此外,大气沉积过程是NH3进入沿海水域的主要途径, NH3沉积到敏感的生态系统(如盐沼)可导致土壤酸化、富营养化和生物多样性丧失等一系列负面影响。研究方法研究人员于2018年6月21日至7月20日在圣琼斯保护区利用Picarro SI2103氨气分析仪进行了NH3浓度连续和高时间分辨率测量,并计算NH3通量,结合其他测量指标如:CO2、CH4、H2O、pH值、水位、电导率、盐度、溶解氧、水中溶解无机氮等以加强对沿海盐沼生态系统NH3地气交换过程的理解。结 论潮汐水位...
发布时间:
2024
-
09
-
30
浏览次数:7
棕色碳(BrC)是一类在近紫外和可见光区吸收光辐射的有机碳,不仅对大气造成辐射强迫,更是对大气光化学反应速率有着重要作用。BrC不仅影响着大气的辐射平衡和气候变化,还直接关系到区域空气质量与公众健康。本论深入探讨了棕色碳发色团的光学性质与化学成分之间的密切关联,为更准确地评估其在环境系统中的行为和影响提供了科学依据。棕色碳发色团光学性质和化学成分之间的联系背景介绍棕色碳(BrC)是大气有机气溶胶的重要组分,在紫外到近红外波段具有较强的吸光能力,对全球气候变化和大气化学过程具有重要影响。BrC结构复杂、种类众多、来源广泛。大量研究表明生物质燃烧、煤燃烧、机动车尾气、生物排放以及二次有机气溶胶等是BrC的重要来源。芳香族挥发性有机化合物,如苯同系物和衍生物,也可能是BrC发色团的重要前体。但是,不同源排放的BrC进入大气后,受到复杂的大气化学过程,其光学性质和化学结构会发生很大的变化。研究方法2018年冬季高污染期,在机动车影响区和生物质燃烧影响区来调查BrC发色团的化学组分和光吸收性质。利用Picarro SI2103氨气分析仪测量NH3。将环境相对湿度、温度、固相无机物和NH3作为输入参数,利用ISORROPIA II 热动态模型计算气溶胶液态水,进而计算其含量。结 论对苯二甲酸、硝基苯酚和硝基儿茶酚是BrC的主要组成物质,占识别的发色团浓度的50%以上。硝基苯酚和硝基儿茶酚对30...
发布时间:
2024
-
09
-
30
浏览次数:18
摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,RPD为1.68。迁移后模型的预测精度、R2值、RMSE和RPD分别为0.72、6.71 g/kg和1.53。与模型直接迁移预测相比,采用基于四阶多项式和XG-Boost的土壤光谱校正模型,SOM预测结果的RMSE分别降低了57.90%和60.27%。 这种性能比较凸显了在区域尺度 SOM 预测中考虑土壤物理特性的优势。Figure 1. Framework of the proposed SOM...
发布时间:
2024
-
06
-
11
浏览次数:32
北京,这座拥有千年历史的城市,见证了无数历史的变迁和现代文明的飞跃。然而,随之而来的是空气质量问题,尤其是由机动车尾气排放引发的大气污染。据相关研究显示,机动车尾气中含有大量的有害物质,包括一氧化碳、氮氧化物、挥发性有机化合物以及细颗粒物等,这些污染物不仅对人体健康构成威胁,还会导致城市雾霾的形成,影响城市的视觉美感和居民的生活质量。在众多污染物中,氨气作为一种典型的碱性气体,其来源多样,包括农业活动、工业生产、生活垃圾处理等。在北京市城区车辆排放是否是氨气的主要来源?据此,来自中国科学院大气物理研究所的研究团队进行了相关研究。北京城区NH3排放源-机动车尾气背景介绍氨气是大气中重要的碱性气体,在中和酸性气体,形成二次气溶胶方面发挥着重要作用。NH3在大气中滞留时间短,因此NH3浓度日变化显著。一般特征为在早上大约07:00~10:00,NH3浓度到达峰值。然而以前的研究局限于单一季节,无法阐明该现象对于所有季节是否是普遍特征。且尚不清楚车辆排放是否是城市NH3主要源。研究方法来自中国科学院大气物理研究所的研究团队利用Picarro G2103氨气分析仪在中科院大气物理所一栋建筑物屋顶进行了NH3浓度年在线观测并通过离线方式在冬天以小时尺度测量了NH4+及δ15N。旨在表征NH3日动态变化并识别NH3的城市源。结 论北京市城区早晨NH3峰值的发生是一种普遍特征,平均发生频率为73....
发布时间:
2024
-
05
-
20
浏览次数:15
菱透浮萍绿锦池,夏莺千啭弄蔷薇透过浮萍,诗人的眼里看到的是其和水中菱叶相映成趣的景象,是夏日池塘的勃勃生机。而在科研学者的眼中,看到的是天南星目浮萍科的水生植物,是潜藏在水稻种植中的双刃剑。营养物质的争夺?自然光照的遮挡?生存空间的占据?在一片生机之下,浮萍和水稻之间塑造着另一番景象..由于气候变暖/或灌溉水富营养化的影响,稻田中的浮萍(DGP)大幅增加。本研究考虑到生态因素、光合能力、光谱变化和植物生长等因素,对三个代表性水稻品种进行了田间试验,以确定DGP对水稻产量的影响。结果表明,DGP显著降低pH值0.6,日水温降低0.6℃,水稻抽穗期提前1.6天,并平均增加了叶片的SPAD和光合速率分别为10.8%和14.4%。DGP还显着提高了RARSc、MTCI、GCI、NDVI705、CI、CIrededge、mND705、SR705、GM等多种植被指数的数值,并且水稻冠层反射光谱的一阶导数曲线在DGP处理后呈现出“红移”现象。上述因素的改变可导致株高平均增加4.7%,干物质重量平均增加15.0%,每平方米穗数平均增加10.6%,千粒重平均增加2.3%,最终籽粒产量增加10.2%。 DGP诱导的籽粒增产可以通过降低稻田水的pH值和温度来实现,从而提高SPAD值和叶片的光合作用,刺激水稻植株生长。这些成果可以通过水稻和浮萍之间的生物协同作用,为未来农业和环境的可持续发展提供有价值的理...
发布时间:
2024
-
05
-
17
浏览次数:27
在城市污水处理与农村生活废弃物管理中,化粪池作为一种常见的粪便处理设施,承担着重要角色。然而,化粪池在分解过程中会产生包括氨气在内的恶臭气体,这些气体不仅对周围环境造成异味污染,还可能对人体健康构成威胁。以下论文中,来自上海市环境科学研究院的研究团进行了化粪池的相关研究,以降低化粪池氨气排放对环境的负面影响,促进生态平衡和可持续发展,为相关领域的政策制定和技术改进提供理论依据和实践指导。中国城市潜在NH3排放源-化粪池背景介绍在中国高度污染的城市大气中,大气新粒子形成可能是由于硫酸和胺的成核机制,而目前尚不清楚为什么中国的城市大气中富含胺。在城市中,尽管抽水马桶的普及率接近100%,但人类排泄物大多储存在建筑物下面的化粪池中,而不是直接运往污水处理厂。化粪池中大量NH3是微生物分解的产物,可以通过连接屋顶的塑料管释放到大气中。鉴于胺与氨是共同排放的,有理由认为人类排泄物也可能是中国城市中胺的重要来源。除了解氨排放特性外,基于氨和胺同时测量来制定准确的氨排放清单是必要的。研究方法来自上海市环境科学研究院的研究团队于2020年7月6日至30日在上海市环境科学研究院的化粪池及室外环境中利用Picarro G2103氨气分析仪以1HZ高时间分辨率进行了NH3在线测量,同时测量了各种胺组分。结 论在人类活动的驱动下,持续观测到强烈的C2-和C3-胺排放脉冲,其中(C3H7N)以前很少测量到,...
发布时间:
2024
-
05
-
08
浏览次数:26
大兴安岭地处中国东北,这里的气候寒冷干燥,冬季漫长而严寒,夏季则短暂而凉爽,适宜白桦的生长。亭亭白桦,悠悠碧空,微微南来风。春天,是大兴安岭的白桦树复苏的季节。雪融水润,大地回春,在这神秘而美丽的土地上,白桦树以其独特的水分利用能力,展现出了大自然魅力。大兴安岭南部白桦的水分利用规律及其对干旱环境的适应性本研究旨在考察大兴安岭南部天然次生林中主要植物白桦(Betula platyphylla)的水分利用模式。该调查利用氧稳定同位素技术,时间跨度涵盖2019年7月至2020年9月。东北地区研究区的位置及其森林分布(绿色)。“其他”是指林地(灰色)以外的土地利用类型。在两年的时间里,在纯白桦林内建立的 30 m × 30 m 的样地内进行了季节性田间试验。作者选择了五棵健康的白桦木,其高度和胸径接近研究区域的平均值。样地土壤剖面较浅(厚度约为 40-70 厘米)土壤采样在每月中旬无雨的日子或降雨后的几天进行。每月系统采集10 cm、20 cm、30 cm、40 cm、60 cm深度的树木木质部水和土壤水样本,进行稳定同位素分析。成熟植物体内水的同位素组成可以反映植物水分来源的同位素组成。2019年和2020年(5月至10月)在样树上取样,每棵样树取样3个重复。使用手动螺旋钻获取土壤水样,并用封口膜密封在玻璃容器中,用于随后的同位素分析。为了减轻蒸发对同位素含量的影响,所有土壤...
发布时间:
2024
-
04
-
18
浏览次数:39
有机蔬菜,是指在蔬菜生产过程中严格按照有机生产规程,禁止使用任何化学合成的农药、化肥、生长调节剂等化学物质,以及基因工程生物及其产物,而是遵循自然规律和生态学原理,采取一系列可持续发展的农业技术,协调种植平衡,维持农业生态系统持续稳定,且经过有机食品认证机构鉴定认证,并颁发有机食品证书的蔬菜产品。关于如何快速鉴别有机蔬菜与非有机蔬菜,光谱仪器的应用提供了新的思路。一起来了解一下今日推荐的文章。使用 VIS-NIR 光谱仪通过特征波长和线性判别分析法快速区分有机和非有机叶菜(空心菜、苋菜、生菜和小白菜)当前有机叶类蔬菜面临着可能被非有机产品替代以及容易脱水和变质的挑战。为了解决这些问题,本研究采用ASD FieldSpec 4 便携式地物光谱仪 结合线性判别分析 (LDA) 来快速区分有机和非有机叶菜。有机类包括有机空心菜 (Ipomoea Aquatica Forsskal)、苋菜 (Amaranthus tricolor L.)、生菜 (Lactuca sativa var. ramosa Hort.) 和小白菜 (Brassica rapa var. chinensis (Linnaeus) Kitamura),而非有机类别由四种对应的非有机类别组成。分别对这些蔬菜的叶子和茎的反射光谱进行二元分类。鉴于 VIS-NIR 光谱范围广泛,使用稳定性选择 (SS)、随机森林 (RF)...
发布时间:
2024
-
03
-
04
浏览次数:24
微塑料是指直径小于5毫米的塑料颗粒,它们主要来源于塑料制品的磨损、降解和破碎,对环境和生态系统产生了不容忽视的影响。微塑料广泛分布在河流、湖泊、海洋等水体中,对水环境会造成污染,也可被水生生物摄取,进而在食物链中传递,最终影响到人类健康。此外,微塑料还可能影响浮游动物的摄食、生长和繁殖,从而影响整个生态系统的功能。针对微塑料是否会影响生物扰动活动,国外的一组团队展开了研究。淡水沉积物中的微塑料影响主要生物扰动者在生态系统功能中的作用 微塑料(粒径≤5mm)是塑料废物中的一部分,会通过沿海径流和河流进入到海洋。根据其密度差异,或漂浮在水中或进入沉积物中。沉积物-水界面是水中生物主要活动区,通过生物地球化学过程在生态系统功能中发挥着重要作用。这些生物地球化学过程主要由微生物活动驱动,而底栖无脊椎动物生物扰动作用明显,可凭借进食、排泄、推土、掘穴以及建造洞穴、土堆和坑等行为影响各界面间的养分动态及微生物过程。但目前尚不清楚微塑料的存在是否会影响生物扰动者在沉积物中的生理和活动。基于此,为填补研究空白,国外的一组研究团队在法国东南部Lone des Pêcheurs河床收集沉积物,过筛后,于-20℃储存以杀死微生物。然后测量了沉积物样品的颗粒物粒径分布、总有机碳(TOC)和总氮含量(TN)。将沉积物和微塑料在玻璃瓶中混合以形成4个微塑料浓度(0 颗粒物/kg沉积物干物质(对照)...
发布时间:
2024
-
02
-
28
浏览次数:14