摘要:羰基硫在全球硫循环中起重要作用。作为一种温室气体,在气溶胶形成和大气化学中受气候变化影响。 CO2和OCS分子在化学和植物代谢途径中的相似性使OCS可以代替植物对全球总CO2的固定(总初级生产力,GPP)。然而,诸如土壤中OCS交换之类的未知因素(OCS产生(POCS)和消耗( UOCS )的同时发生)限制了利用OCS来代替GPP方法的使用。我们通过在充满不同混合比的空气熏蒸动态室系统中测量OCS(OCS、CO2、CO和H2O分析仪(907-0028,LGR))、CO和NO的净通量来估算POCS和UOCS 。不同土地利用的9个土壤样品重新湿润,在土壤变干时,监测土壤和空气的交换,以评估其对水分变化的响应。OCS交换的主控因子是土壤中有效硫的总量。在WFPS(充满水的孔隙)>60%时,土壤中的POCS生产率最高,且速率与硫代硫酸盐浓度呈负相关。在水分含量适中水平( WFPS为15%-37%),土壤由净源转变为净汇。对于三种土壤而言,我们在不同OCS混合比下测量了NO和CO的混合比,结果发现,土壤水分适度条件下,NO和潜在的CO交换率与UOCS有关。高土壤水分条件下,高硝酸盐浓度与最大OCS释放速率有关。在被调查土壤中发现水分和OCS混合比与不同微生物活性以及红色样CbbL和amoA的基因转录物有关。
结论:OCS交换中,CA发挥了重要的作用,但与CO2通量有关的其他酶的作用被低估了。需要结合32S标记OCS的稳定同位素技术和宏基因组学来证明我们的结论,即CA以外的其他酶也参与了OCS转化。该研究是迈向了解土壤微生物OCS的产生和消耗机制的重要一步。
Microbial community responses determine how soil–atmosphere exchange of carbonyl sulfifide, carbon monoxide, and nitric oxide responds to soil moisture.pdf