北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

LI-2100 | 基于水分利用策略和植物性状确定坡耕地玉米种植适宜土壤厚度

日期: 2024-10-29
浏览次数: 49

LI-2100 | 基于水分利用策略和植物性状确定坡耕地玉米种植适宜土壤厚度 

水资源在粮食生产和生态修复中的关键作用,特别是在频繁出现的高温、干旱等极端天气条件下,威胁粮食生产,加速土地退化。研究指出,中国作为人均水资源低于世界平均水平的国家,农业用水已占全国总用水量的60%以上,但整体用水效率较低且区域差异显著。尤其在山区和丘陵地区,土壤侵蚀和厚度减少严重影响了蓄水能力,加剧了干旱频发和作物减产的风险。为应对这些挑战,本文强调了通过优化农业管理实践,提高用水效率,以缓解干旱胁迫,维持作物产量的重要性。

本次田间试验在中国科学院盐亭紫色土农业生态站进行,该站位于中国四川盆地中北部,海拔400-600m(东经105° 27’,北纬 31°16’)(图 1)。该地区属于中亚热带季风气候,平均气温 17.3℃。年平均降水量为826mm,蒸发量为680 mm。降雨分布不均,约70%的年降水发生在夏秋季,季节性干旱频繁,主要发生在春季和初夏。

LI-2100 | 基于水分利用策略和植物性状确定坡耕地玉米种植适宜土壤厚度 

图1. 研究区域位置(a)、实验地块图片(b)、地块设计图(c)、实验地块剖面图(d)。


本试验土壤为钙质紫色土,来源于蓬莱镇组,属于中温土壤质地,被称为新土,占四川盆地紫色土总量的四分之一以上(图1)。钙质紫色土剖面主要发育在页岩和泥岩中,常与不透水的砂岩互层。浅层紫色土的下伏基岩限制了根系生长,入渗的大部分水分往往会因地下径流绕过根区而流失。试验土壤性质相似,平均值为:pH 值为8.37,土壤有机碳 (SOC) 为5.80 g·kg−1,全氮含量 (TN) 为0.80 g·kg−1,容重为1.14 g·cm−1,阳离子交换容量 (CEC) 为8.22cmol(+)·kg−1,含沙量为17.28%,饱和水力传导率为16.8mm·h−1。坡耕地冬小麦 (Triticumaestivum L.) 与夏玉米 (Zea mays L.) 轮作常规种植制度已持续 50 余年。

现场监测共设计15个小区。小区尺寸为5mx 1.5m,坡度为6.5°,模拟长江上游坡耕地的平均梯田坡度。试验设置了5种土壤厚度处理(20 cm、40 cm、60 cm、80 cm、100 cm),每个处理重复3次。试验小区通过无缝水泥墙和基座进行水文隔离,构建不同厚度的防渗混凝土盆并重新填筑原有土层。经过8年的常规耕作(小麦-玉米轮作)后,确保土壤剖面保持原状。所有处理均采用相同的施肥管理(氮肥150 kg·hm−2,磷肥90 kg·hm−2,钾肥36 kg·hm−2)和种植模式,玉米于2020年5月移栽,9月收获,全程不灌溉。

采样在干湿交替条件下进行。2020年7月9日(拔节期)、7月27日(孕穗期)、8月10日(抽雄期)、8月27日(成熟期)分别采集土壤和玉米茎样品。7月9日和8月27日为干旱期,持续7-8天;7月27日和8月10日为降雨后的湿润期。上午8-9点,从15个地块的玉米茎第一节间采集样品,同时在茎采样位置附近的不同深度(0-100 cm)采集土壤样品。部分样品用玻璃瓶密封后冷冻保存,测定氢和氧稳定同位素;另一部分样品带回实验室,在105℃烘干24小时至恒重,以确定土壤含水量。


表1. 采样地块详情

LI-2100 | 基于水分利用策略和植物性状确定坡耕地玉米种植适宜土壤厚度

本研究采用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)从采集的玉米茎和土壤样品中提取水分。δ2H 和 δ18O 分析采用 L2120-I 分析仪(Picarro,美国)进行分析。

LI-2100 | 基于水分利用策略和植物性状确定坡耕地玉米种植适宜土壤厚度

图2 土壤厚度20 cm (C1)、40 cm (C2)、60 cm (C3)、80 cm (C4)、100 cm (C5)处理土壤储量及平均含水量的变化特征。


LI-2100 | 基于水分利用策略和植物性状确定坡耕地玉米种植适宜土壤厚度

图3 不同土层雨水、玉米茎水及土壤水的δ2H与δ18O关系。(a)所有采样日期拟合δ2H与δ18O得到的线性方程;(b)7月9日拟合δ2H与δ18O得到的线性方程;(c)7月27日拟合δ2H与δ18O得到的线性方程;(d)8月10日拟合δ2H与δ18O得到的线性方程;(e)8月27日拟合δ2H与δ18O得到的线性方程。

LI-2100 | 基于水分利用策略和植物性状确定坡耕地玉米种植适宜土壤厚度

图 4 采样日期土壤厚度为 20 厘米 (C1)、40 厘米 (C2)、60 厘米 (C3)、80 厘米 (C4)、100 厘米 (C5) 的处理中土壤水和茎水的 δ2H 和 δ18O 值的变化。



LI-2100 | 基于水分利用策略和植物性状确定坡耕地玉米种植适宜土壤厚度

图5 采样期间土壤厚度20 cm (C1)、40 cm (C2)、60 cm (C3)、80 cm (C4)、100 cm (C5)处理不同土层土壤水及雨水对茎水相对贡献比例的变化。

 

本研究基于天然同位素示踪技术结合现场土壤水分与生理形态特征测定,研究了西南坡耕地不同土壤厚度下夏季玉米的水分利用机制。结果表明:浅土壤(0~40cm)玉米种植对深层土壤水分的依赖性更强,土壤厚度超过60cm的玉米更倾向于利用各土层中分布较为均匀的水分。浅土壤夏玉米由于水资源有限,长期水分利用效率较高,但株高、叶面积、光合和蒸腾速率较低,尤其是在干旱条件下,导致干物质积累较少,产量降低。表明60cm以上土壤厚度具有较大的水分生态位宽度,适合亚热带坡耕地紫色土玉米生长。本研究对亚热带浅紫色土区旱地作物(玉米)的土壤-植物-水分关系提供了新的、关键的见解。未来研究应注重根系形态的年际变化及不同土壤类型或农田下垫面特征,以加强山地丘陵地区农业综合管理。


News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开