北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

Resonon | 利用Resonon Pika L高光谱成像估算玉米叶片氨基酸含量

日期: 2022-10-24
浏览次数: 10

Resonon | 利用Resonon Pika L高光谱成像估算玉米叶片氨基酸含量Resonon | 利用Resonon Pika L高光谱成像估算玉米叶片氨基酸含量

玉米是世界上最重要的作物之一。在玉米生长过程中,氮(N)是最重要的营养元素之一。玉米叶片中N转运主要以谷氨酰胺的形式进行。玉米产量与灌浆期叶片中的谷氨酰胺、谷氨酸、丙氨酸、天冬氨酸和天冬酰胺等氨基酸具有很好的相关性。因此,准确快速估算玉米叶片氨基酸含量对于提高玉米产量和N利用效率至关重要。分光光度法、化学分析法和质谱法是确定氨基酸含量的主要方法,具有高灵敏度和高准确度。然而,这些方法会破坏样品,且需要复杂的样品处理过程,通量低,成本高。高光谱成像技术因其快速、高通量和无损式测量成为估算作物生理生化参数的新方法,且已广泛用于作物表型性状的高通量筛选。然而,目前利用高光谱数据估算新鲜玉米叶片氨基酸含量的研究十分有限。

基于此,为填补研究空白,在所附的文章中,中国农业大学的研究团队以新鲜玉米叶片为研究对象,探索了高光谱成像技术估算其氨基酸含量的可行性。考虑到施氮量对玉米叶片氨基酸含量的极大影响,作者设置了两个变量施氮实验。利用Resonon Pika L高光谱成像仪(光谱范围为400-1000 nm)采集玉米叶片的高光谱图像,并测量了玉米叶片24种氨基酸含量。作者利用NDVI从背景中分离出绿色叶片(高光谱图像预处理),利用Savitzky-Golay滤波进行去噪(数据预处理)。在模型建立过程中,作者首先通过样本变异系数(CV)和偏最小二乘回归(PLSR)筛选了各氨基酸含量的敏感波段范围和特征波段。然后,基于全波段反射率、敏感波段范围和特征波段分别对24种氨基酸含量进行建模,最后利用未参与建模的样本验证各估算模型,选出各氨基酸含量的最佳估算模型。

Resonon | 利用Resonon Pika L高光谱成像估算玉米叶片氨基酸含量

高光谱图像采集系统。

结果

Resonon | 利用Resonon Pika L高光谱成像估算玉米叶片氨基酸含量

测试集部分氨基酸含量最佳预测模型实测值与预测值关系散点图。

【结论】

PLSR回归系数检验发现,大多数氨基酸特征波段主要集中在505.39-604.95 nm和651.21-714.10 nm。基于全波段反射率、敏感波段范围和特征波段分别对24种氨基酸含量进行建模和验证。选出各氨基酸含量的最佳估算模型。结果表明,b-氨基丁酸、鸟氨酸、瓜氨酸、蛋氨酸和组氨酸含量的估算精度优于其它氨基酸,测试集R2,RE和RPD范围为0.84-0.96,8.79%-19.77%和2.58-5.18。肌氨酸、丙氨酸、谷氨酸、脯氨酸、苏氨酸、亮氨酸、天冬氨酸含量的估算精度正常,测试集R2,RE和RPD范围为0.58-0.73,23.23%-39.69%和1.56-1.94。其它氨基酸模型性能相对较差。该研究为基于高光谱技术监测育种材料性状提供了参考。

请点击下方链接,阅读原文:

https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650314923&idx=2&sn=a9435644565c7bce831ba968a93eb596&chksm=bee1b45489963d42e1a56efa8112a6db637e4f96df130f9c5020d57899d7d2909af900701d46&token=2034583537&lang=zh_CN#rd


News / 相关新闻 More
2024 - 02 - 21
肉类富含丰富的蛋白质和营养物质,不仅能够满足我们的味蕾,还能够提供我们身体所需的能量和营养。随着肉类需求的增加,大规模的肉类生产和运输过程中,肉类的速冻可以一定程度保持食物的新鲜度和口感。然而,关于速冻解冻的肉类,和新鲜肉类的混淆,让人难以分辨。首尔大学的研究人员利用高光谱成像技术,做了相关的研究。使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类由于对安全、可食用肉类的需求的不断增加,冷冻储存技术得到了不断改进。然而目前存在解冻肉在处理和销售过程中被进行了错误的标记,宣称为新鲜肉类,这可能导致消费者受到误导或产生安全隐患。在这项研究中,使用高光谱图像数据构建了一个机器学习(ML)模型,用于区分新鲜冷藏、长期冷藏和解冻的牛肉样本。通过四种预处理方法,共准备了五个数据集来构建ML模型。使用PLS-DA和SVM技术构建了模型,其中应用散点校正和RBF核函数的SVM模型性能最佳。结果表明,利用高...
2024 - 01 - 30
水是地球上最丰富的天然资源之一,它是所有生物体的基本需求。水在地球上循环的过程中,植物水分吸收与蒸腾演绎着重要的角色。植物通过根系吸收水分,并将水分输送到植物的各个部位。植物通过蒸腾作用释放水分到大气中,形成了大气中的水蒸气。植物水分的来源和分配是植物生长和发育过程中的重要环节,也是相关科研的重点,水同位素技术成为科研过程中十分重要的一种科研手段。今天推荐给大家的优秀文章与此相关。利用同位素技术解析植物水分来源的不确定性因为蒸腾占据了61%-65%的陆地生态系统蒸散量,植物水分吸收在全球水循环中发挥着重要作用。植物是土壤和大气水文过程的纽带,这就是实施植物恢复可以改善区域环境的原因之一。在此背景下,研究植物水源划分为如何提高植被生产力和水资源可持续管理提供重要信息。因为植物和环境条件相互作用,水分吸收是一个复杂的过程,这使得植物水源分配变得复杂。近几十年来,同位素广泛应用于植物水源划分,因...
2024 - 01 - 22
当今社会,人们越来越关注气候变化和环境保护,而农业生产对这些问题有着重要的影响。GVP系统(Greenhouse Vegetable Production System)作为一种新型的蔬菜生长系统,被认为是减少化肥使用、提高农作物产量、减少温室气体排放的有效途径。那么,在GVP系统下蔬菜生长过程中产生的一氧化二氮(N2O)的排放量是怎样的呢?对环境又会造成什么影响呢?下面这篇相关论文,一起来探讨下。中国北方寿光设施蔬菜生产系统高土壤氧化亚氮排放中国的设施蔬菜生产(GVP)系统正在迅速发展,其面积已超过4百万公顷,占全球的80%以上。山东省是中国蔬菜主产区,其中寿光地区被誉为“中国设施蔬菜之乡”, GVP面积超过当地土地面积的四分之一(图1b)。为了实现产量及利润的最大化, GVP系统通常过量灌水和施肥,年灌水量约2000mm,年氮肥施用量通常在2000 kg N ha-1以上,是露天菜地的...
2024 - 01 - 15
水,我们生活中无处不在的重要元素。它润泽着大地,孕育着生命。然而,水的旅程并不仅仅局限于地表,它通过蒸发和降水,与大气、植被形成了紧密的互动。而这种互动的背后隐藏着一系列的谜题,需要科学家们通过不断研究来揭示。水同位素研究便是一种重要的手段,通过分析水中的同位素元素,科学家们能够了解水的来源、循环和变化。水同位素研究为科研人员提供了一种宝贵的工具,帮助他们更好地了解水、植被和气候之间的复杂关系。一起来了解一下,来自西北师范大学的研究团队,用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)做的相关研究。水资源是制约干旱区社会发展的主要自然资源,山区是内陆干旱区重要的水源涵养区,山区冰川积雪融水对干旱区淡水供应至关重要。随着气候变暖,冰川积雪融化加速,地表蒸散发增强,降水变异性加剧,气候变化将增强山区河流水文过程的复杂性。水稳定同位素是深入了解区域水文过程的有效方法,研究内陆...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开