北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍

日期: 2024-04-26
浏览次数: 124
目录
1. 后处理方法介绍
1.1 Ustar阈值判断(主要针对夜间NEE)
1.2 数据插补
1.2.1 查表法插补(LUT法)
1.2.2 平均日变化曲线法(MDC法)
1.2.3 样本边缘分布采样法(MDS法)
1.3 数据拆分
2. REddyProc包处理数据格式介绍
2.1 输入需要处理数据的格式
2.2 输出处理完毕数据的格式
3. REddyProc包的R代码介绍
3.1 准备—R程序包安装、运行、目标数据导入和调整
3.2 数据后处理
3.2.1 Ustar阈值计算
3.2.2 数据插补
3.2.3 NEE拆分插补
3.2.4整合处理结果并输出数据
涡动通量数据处理分为在线处理(online-processing)和后处理(post-processing)。其中在线处理针对高频通量数据(e.g.10Hz data)通过一系列标准方法进行计算,最后得到带有质量评价的低频通量数据(e.g.half-hour data),后处理主要包括Ustar阈值估计、数据插补和碳通量(NEE)拆分(植被总生产力GPP和呼吸消耗Re)及其结果的可视化表达。
当夜间大气湍流运动较弱时,摩擦风速u∗降低,涡动相关系统测量碳通量NEE时会出现低估的现象,数据漂移值增多。通常需要判断出u∗阈值,剔除这些低于u∗阈值的NEE;对缺失的数据进行插补,有利于得到完整的时间序列并得到更长时间尺度(月或年)下的均值;NEE通过主流的模型方法进行拆分,以便进一步了解研究区NEE两大组分:(1)生态系统总生产力(或总初级生产力)(2)生态系统呼吸。REddyProc 程序包通过R语言平台实现了以上三个方面的数据后处理,以及对其计算结果实现基本可视化功能。
1. 后处理方法介绍
数据后处理所使用的通量数据是已经过异常值剔除后的数据,NEE拆分或可插补的数据包括碳通量(NEE,umolm-2s-1)、感热通量(sensible heat flux (H) Wm-2)、潜热通量(latent heat flux (LE) Wm-2)、摩擦风速(friction velocity (u∗) ms-1)、入射短波辐射(global radiation (Rg) Wm-2), 空气或土壤温度(air or soil temperature (Tair, Tsoil) ℃)和水汽压饱和差(vapor pressure deficit (VPD) hPa)或相对湿度(relative humidity (RH) %)。其中u∗、Rg、VPD、Tair和RH是NEE滤除、插补和拆分默认使用数据。
数据后处理主要流程包括(图 1):
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
●确定和滤除湍流发展较弱的时期下的NEE(计算u∗阈值)。
●插补缺失的小时数据。
●拆分碳通量小时数据,得到GPP和Reco。
图1 数据后处理流程,以某一站点数据为例
(Wutzler et al.(2018))
1.1
Ustar阈值判断(主要针对夜间NEE)
仪器所在高度处可以测量到下垫面全部碳通量(无平流损失),对应的最小u∗称为u∗阈值,u∗阈值通常出现在夜间(Rg<10 Wm-2)。由于下垫面粗糙度在不同时期(季节)发生变化,导致u∗阈值会产生季节变化。(the u∗ threshold is the minimum u∗ above which respiration reaches aplateau. This threshold is specific for each season of a site year.)。
当前REddyProc 包计算Ustar阈值方法主要有移动点法(the moving point method,MPT)和断点检测法(the breakpoint detection method,CPT),其中MPT较常用。
1.2
数据插补
Ustar阈值滤除NEE后,会有更多的NEE缺失数据,需要插补。
1.2.1 查表法插补(LUT法)
在REddyProc包的查表法中(look-up table (LUT)),所有通量数据以特定的时间窗口内的相似气象条件为依据进行分类并计算平均值,最后得到可供参照的速查表。缺失的数据可利用同时间序列中已知的气象数据与速查表匹配,对应的通量数据即为所缺失的数据。
1.2.2 平均日变化曲线法(MDC法)
该方法可在其他气象数据缺失条件下进行通量数据插补。假设植物晚上只进行呼吸作用,白天发生光合和呼吸作用,且NEE具有较为规律的日变化特征。则缺失的数据可根据临近天同时刻(或前后一小时)已知的通量数据进行插补(mean diurnal course (MDC))。
1.2.3 样本边缘分布采样法(MDS法)
边缘分布采样法(marginal distribution sampling (MDS))结合了以上LUT和MDC两种方法,根据通量数据与气象因子之间的关系(covariation)以及通量数据在时间上的自相关进行插补。MDS可针对较大缺失范围的NEE和LE数据插补,该方法目前最受欢迎。
利用Rg, Tair和 VPD三种气象数据,(1)如果三个气象数据皆未缺失, 使用LUT 方法,三个气象因子默认边际条件(default margins)为50 Wm−2, 2.5 ◦C和5.0 hPa;(2)Tair 或VPD 缺失, 则只利用 Rg;(3) 如果三种气象数据都缺失,使用 MDC方法。另外,很多站点没有Rg的观测数据,可用光合有效辐射par代替,并设置par的边际条件(可尝试使用100-200 μmol m-2 s-1)
1.3
数据拆分
NEE、Reco(↑)和GPP(↓)三者关系为NEE = Reco– GPP,当前NEE拆分为Reco 和GPP主要方法有利用夜间NEE数据拆分和利用白天NEE数据拆分两种。当前夜间NEE数据拆分方法最常用。
夜间NEE数据拆分方法是假设植被呼吸Reco只与Tair变化有关,且夜间植被只进行呼吸作用,因此可以通过夜间NEE对Tair的响应变化曲线推出白天植被的呼吸Reco变化,最后根据以上关系式求出植被总生产力GPP。
白天NEE数据拆分方法是将白天NEE和总辐射的关系假设为Rg和VPD对GPP的影响以及Tair对Reco的影响的综合。
2. REddyProc包处理数据格式介绍
本节图片来源:
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWebDataFormat
注意虽然REddyProc包是基于该网页在线工具所开发的,但是二者的算法还有一些区别,详情参见Wutzler et al.(2018)。
2.1
输入需要处理数据的格式
输入数据格式如图2所示,输入文件类型为“文本文件(制表符分隔)(*.txt)”
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
图2 数据输入类型及格式
2.2
输出处理完毕数据的格式
输出的数据主要包括数据插补结果(图 3),u∗阈值估计结果(图 4)和NEE拆分为GPP和Reco的结果(图 5)。
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
图3 数据插补数据结果格式
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
图4 Ustar阈值数据结果格式
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
图5 NEE数据拆分结果格式
3. REddyProc包的R代码介绍
白色字为代码,“###”后仅为代码介绍的文本,无其他功能。“#”为跳过无需运行的代码。
3.1
准备—R程序包安装、运行、目标数据导入和调整
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
3.2
数据后处理
按照Ustar阈值计算,数据插补和NEE拆分三个流程分别进行处理。
3.2.1 Ustar阈值计算
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
3.2.2 数据插补
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
3.2.3 NEE拆分
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍
3.2.4 整合处理结果并输出数据
R语言(“REddyProc”包)对涡动小时通量数据处理的方法介绍


News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910124070

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开