北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

应用高光谱成像技术鉴定固体显色培养基菌落

日期: 2020-07-09
浏览次数: 124

Hyperspectral imaging for presumptive identification of bacterial colonies on solid chromogenic culture media

author:Mathilde Guillemota,Rony Midahuena, Delphine Archenyb,Corine Fulchironb,Regis Montvernaya,Guillaume Perrina, Denis F. Leroux*a  aTechnology Research Department, Innovation Unit,bioMérieux SA, Marcy l’Etoile, France; bR&D  Microbiology,bioMérieux SA, La Balme les Grottes,France

BioMérieux致力于研究自动化微生物学实验室,以降低成本 (更少的人力和耗材), 提升性能 (提升灵敏度,机器算法),并通过优化临床实验室工作流,获得可追溯性。在这项研究中, 我们评估了采用高光谱成像技术(HIS)代替人类视觉观测微生物培养解读的可能性。在显色培养基中培养24小时后,通过分析,微生物菌落从19种被过滤细分为6种显色种类(chromID® CPS Elite, bioMérieux, France)。高光谱成像技术在400-900纳米光谱区域采用线阵扫描分析,利用线性混合像元分解算法,并使用专门的漫反射光谱(DRS)作为输入数据,我们采用完全自动化的方法,获得组内100%的分类精度,并没有采用形态信息。为了简化仪器,我们采用了判别力最强的14个光谱通道(多光谱模型之一)或者3个通道(RGB图像模型)评估退化的DRS性能。结果发现,多光谱模型的整体分类性能保持不变,但RGB预测模型退化,这意味着,多光谱解决方案将会带来改善菌落识别的答案。

应用高光谱成像技术鉴定固体显色培养基菌落

应用高光谱成像技术鉴定固体显色培养基菌落

 

 

文献来源:Leroux ProcSpie98873L.pdf

应用高光谱成像技术鉴定固体显色培养基菌落32e124918630d7c907e8a995658e546f.pdf (835.78 KB)


上一篇:无下一篇:无
News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910124070

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开