北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

稻田中浮萍(Lemna minor L.)生长对水稻产量及其潜在原因的影响

日期: 2024-05-17
浏览次数: 43

菱透浮萍绿锦池,夏莺千啭弄蔷薇

透过浮萍,诗人的眼里看到的是其和水中菱叶相映成趣的景象,是夏日池塘的勃勃生机。而在科研学者的眼中,看到的是天南星目浮萍科的水生植物,是潜藏在水稻种植中的双刃剑。

营养物质的争夺?自然光照的遮挡?生存空间的占据?在一片生机之下,浮萍和水稻之间塑造着另一番景象..
稻田中浮萍(Lemna minor L.)生长对水稻产量及其潜在原因的影响
由于气候变暖/或灌溉水富营养化的影响,稻田中的浮萍(DGP)大幅增加。本研究考虑到生态因素、光合能力、光谱变化和植物生长等因素,对三个代表性水稻品种进行了田间试验,以确定DGP对水稻产量的影响。结果表明,DGP显著降低pH值0.6,日水温降低0.6℃,水稻抽穗期提前1.6天,并平均增加了叶片的SPAD和光合速率分别为10.8%和14.4%。DGP还显着提高了RARSc、MTCI、GCI、NDVI705、CI、CIrededge、mND705、SR705、GM等多种植被指数的数值,并且水稻冠层反射光谱的一阶导数曲线在DGP处理后呈现出“红移”现象。上述因素的改变可导致株高平均增加4.7%,干物质重量平均增加15.0%,每平方米穗数平均增加10.6%,千粒重平均增加2.3%,最终籽粒产量增加10.2%。 DGP诱导的籽粒增产可以通过降低稻田水的pH值和温度来实现,从而提高SPAD值和叶片的光合作用,刺激水稻植株生长。这些成果可以通过水稻和浮萍之间的生物协同作用,为未来农业和环境的可持续发展提供有价值的理论支持。
稻田中浮萍(Lemna minor L.)生长对水稻产量及其潜在原因的影响
图形概要
稻田中浮萍(Lemna minor L.)生长对水稻产量及其潜在原因的影响
图1. 实验地点((a),用红点标记)和浙江省(b)和江苏省(c)的样地。 (d,e)分别显示了浙江省和江苏省的样地水稻生育期的温度变化。浙江地块整个生育期水稻抽穗前和抽穗后的平均气温分别为29.3℃和24.1℃(蓝色),而江苏地块的平均气温为27.8℃和22.3℃(蓝色)。
水稻冠层的光谱数据是在预灌浆、灌浆中期和成熟期的 10:00 至 14:00 晴朗无风的天气条件下使用ASD FieldSpec 4 便携式地物光谱仪收集。波段范围为350~2500 nm,其中350~1350 nm光谱分辨率为3 nm,1001~2500 nm范围为8 nm,光谱数据采集间隔为1 nm。测量每个地块中的五个代表性区域,每次进行六次测量。然后将平均值用作绘图的光谱反射率曲线,并在每次测量之前进行白板校准。为避免光强干扰,尽可能在短时间内采集同批次样品。
稻田中浮萍(Lemna minor L.)生长对水稻产量及其潜在原因的影响
图 2. 稻田浮萍 (DGP) 对水稻冠层光谱特征的影响。 Control-R,控制中的反射光谱数据; DGP-R,稻田浮萍的反射光谱数据; Control-D,对照中的导数光谱数据; DGP-D,稻田中浮萍的导数光谱数据。 NJ5055和YY1540在预填充阶段的光谱特性分别由(a)和(b)表示; NJ5055、YY1540、JFY2在充填中期的光谱特性分别用(c)、(d)、(g)表示。 NJ5055和YY1540成熟期的光谱特征分别用(e)和(f)表示。
DGP显著增加了干物质重量、植株高度(见图3)和谷物产量(见表5),分别增加了15.0%、4.7%和10.2%。对粳稻NJ5055的产量影响较大(增加了12.3%),而对其他两个杂交水稻品种的影响较小(平均增加了9.1%)。无论是粳稻还是杂交品种,均未检测到对收获指数的显著影响。在DGP处理下,三个品种的抽穗期平均提前1.6天,其中粳稻的影响更大(提前了2.4天),而杂交品种的影响较小(平均提前了1.2天)。籽粒产量的增加主要是由每平方米穗数的增加(增加了10.6%)引起的,其次是千粒重的增加(2.3%)。 然而,DGP对每穗的小穗数或结实率影响不大。除结实率外,这些指数均未检测到显著的交互作用效应。

表 1 稻田种植浮萍(DGP)对水稻产量及其构成的影响

稻田中浮萍(Lemna minor L.)生长对水稻产量及其潜在原因的影响
稻田中浮萍(Lemna minor L.)生长对水稻产量及其潜在原因的影响
图3. 稻田中生长的浮萍(DGP)对水稻植株生长的影响。(a)每株的干物质重量(克);(b)收获指数;(c)植株高度(厘米);(d)抽穗天数(天);浙江,浙江省;江苏,江苏省;** p ≤ 0.01,* p ≤ 0.05,+ p ≤ 0.1,ns,不具有统计学意义,p > 0.1,由 t 检验确定。
本研究对三个代表性水稻品种进行的稻田浮萍(DGP)种植试验表明,DGP 显着提高了籽粒产量,这解释了 DGP 导致水稻植株生长的增加,特别是在植株高度、每平方米穗数和干物质重量方面。DGP 导致稻田水的 pH 值和温度降低,同时提高了叶片的 SPAD 值和光合速率。 此外,它还优化了冠层结构,提前了水稻抽穗期,最终促进了水稻的生长。这些发现为实施可持续的水稻生产提供了实用的基础。然而,在广泛的时空背景下全面理解DGP对水稻生长和谷物品质的影响模式尚不清楚。因此,未来应进行跨数年的研究,以探讨DGP影响水稻的机制。
请点击下方链接,阅读原文:
https://mp.weixin.qq.com/s/xhdy5EW_ZAVVknR79CHu5w


News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910124070

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开