北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

黄土高原不同人工林中常见树种的水分利用特征

日期: 2020-05-29
浏览次数: 222

黄土高原不同人工林中常见树种的水分利用特征

摘要:了解再生物种的水分利用特征对于理解土壤与植物之间的相互作用机制以及指导水资源受限生态系统中的生态恢复策略具有深远的意义。尽管植树造林是改善退化生态系统功能和服务的重要途径,但对不同人工林类型中优势种的水分利用特征的了解甚少。作者调查了黄土高原三种代表性人工林(三种落叶树种刺槐、山杏和臭椿组成的混合人工林,纯刺槐人工林,纯山杏人工林)的植物水分利用特征。作者测量了每种人工林中优势种叶片的δ13C以及木质部和土壤(400 cm)水分的δ2H和δ18O。结果表明,混合人工林中三个主要树种在水源贡献比例上表现出显著的差异(P<0.05),表明植物具有水源隔离作用。与纯山杏人工林相比,混合人工林中的山杏利用更大比例的浅层土壤水,相应地减少了对深层土壤水的消耗。然而,在不同人工林中,刺槐水分吸收比例未表现出显著差异。混合人工林中植物叶片的δ13C显著高于纯人工林的。不同人工林中,刺槐叶片的δ13C与SWC呈正相关关系,而山杏中未观察到这种关系。结果表明人工林类型会影响植物水分利用特征,具有对人工林类型的物种特异性响应,以及种间竞争和种内竞争之间不同的水源竞争效应。

研究区域

该研究是在陕西省羊圈沟流域进行的(36°42′45″ N,109°31′45″)。该流域是黄土高原中部的黄土丘陵沟壑区。

黄土高原不同人工林中常见树种的水分利用特征

样品采集

作者于2016年植物生长季节5-9月采集了植物叶片样品用于δ13C的测定,采集木质部样品用于δ2H和δ18O的测定,采集了0-400 cm的土壤样品共630个,用于土壤含水量和土壤水δ2H和δ18O的测定,同时收集了46个降雨样品。利用LI-2100全自动真空冷凝抽提系统抽提植物木质部和土壤水分,利用LGR的液态水同位素分析仪测定土壤和降雨样品的δ2H和δ18O。黄土高原植物根系无法到达地下水深度,且该研究区域无灌溉,所以植物的主要水源是土壤水。


结果

1.土壤和木质部水的同位素组成

图2显示了不同人工林土壤水δ2H和δ18O随土壤深度和季节的变化。混合人工林中,土壤水δ18O平均值为-8.88±1.75‰,δ2H平均值为-67.14±11.86‰。纯刺槐林土壤水δ2H和δ18O平均值分别为-64.06±25.12‰和-8.71±3.53‰。纯山杏林土壤水δ2H和δ18O平均值分别为-67.78±12.57‰和 -8.66±2.13‰。土壤水同位素沿土壤剖面表现出明显的变化。浅层土壤水同位素富集且随季节变化更大。随深度变化深层土壤水同位素贫化且随季节变化小。每种人工林土壤水同位素组成在不同季节和土壤不同深度之间显著不同(P<0.001)。然而,不同人工林土壤水同位素组成无显著差异(δ2H,P=0.052;δ18O,P=0.61)。

黄土高原不同人工林中常见树种的水分利用特征

木质部水同位素组成随季节和物种变化。混合人工林中,刺槐木质部水δ18O平均值为-8.41±0.72‰,δ2H平均值为-67.57±4.37‰,山杏木质部水δ18O平均值为-7.21±1.42‰,δ2H平均值为-59.68±7.42‰,臭椿木质部水δ18O平均值为-7.72±0.89‰,δ2H平均值为-64.53±4.56‰。纯刺槐林木质部水δ18O变化范围为-9.35~-5.98‰,δ2H变化范围为-75.36~-55.68‰。纯山杏林木质部水δ18O平均值为-7.20±1.33‰,δ2H平均值为-61.49±6.25‰。混合人工林中不同物种木质部水同位素显著不同(P<0.001)。此外,木质部水δ2H和δ18O随季节变化表现出显著差异(P<0.001)。大多数土壤水同位素位于地区大气降水线(LMVL)右侧,木质部水的δ2H和δ18O位于土壤水同位素范围内(图3),这表明植物主要从不同土壤层获取水分。

黄土高原不同人工林中常见树种的水分利用特征

2.土壤水可利用性和植物水源分配

不同人工林的SWC表现出明显的季节和垂直变化(图4)。研究期混合人工林的平均SWC是7.01±1.70%,纯刺槐林为6.68±1.46%,纯山杏林为7.13±2.19%。研究期混合人工林浅层土壤含水量最高,而纯刺槐林深层土壤含水量最低。浅层土壤水随季节波动较大,而深层土壤水随季节变化较小。不同人工林浅层和中层土壤含水量无显著差异,而深层土壤水分差异显著(P<0.001)。此外,3个人工林土壤含水量在不同季节之间差异显著(P<0.01)。总而言之,不同人工林之间土壤水分存在显著差异(P<0.05)。

黄土高原不同人工林中常见树种的水分利用特征

生长季植物主要吸收浅层和中层土壤水(图5)。混合人工林中刺槐74.86%的水分以及臭椿75.62%的水分均来源于浅层和中层土壤水。而山杏吸收最大比例的浅层土壤水(60.96%)。在整个生长季,中层和深层土壤水对纯刺槐林的贡献比例分别为32.88%和27.14%。浅层和中层土壤水对纯山杏林的贡献比例分别为43.58%和32.12%。混合人工林中,不同月份之间3个物种水分吸收比例具有显著差异(P<0.05)。混合人工林和纯刺槐林中刺槐从不同土壤层吸收的水分比例无显著差异。然而,混合人工林和纯山杏林中山杏对浅层土壤水分利用比例存在显著差异(P<0.05),对中层和深层土壤水分的利用无显著差异。此外,不同季节之间浅层、中层和深层土壤水对混合人工林中臭椿以及纯山杏林的贡献比例无显著差异。

黄土高原不同人工林中常见树种的水分利用特征

3.植物叶片的δ13C值

图6显示了采样期间植物叶片的δ13C值随季节和植物物种的变化。混合人工林中刺槐,山杏和臭椿植物叶片δ13C平均值分别为-26.77±0.58‰,-26.28±0.54‰和-26.64±0.75‰。纯山杏林植物叶片δ13C值低于混合人工林。采样期间纯刺槐林植物叶片δ13C值最低(-28.00±0.80‰)。总而言之,不同季节,不同物种之间植物叶片δ13C值具有显著差异(P<0.05)。混合人工林中,山杏植物叶片δ13C值显著不同于刺槐和臭椿,且表现出显著的季节变化。此外,混合人工林和纯刺槐林中的刺槐植物叶片δ13C值表现出显著差异(P<0.001)。混合人工林和纯山杏林中的山杏植物叶片δ13C值也表现出显著差异(P<0.001)。

黄土高原不同人工林中常见树种的水分利用特征

4.植物叶片δ13C值与土壤含水量之间的关系

如图7所示,混合人工林中刺槐植物叶片δ13C值与土壤含水量的关系与纯刺槐林不一致。尽管混合人工林和纯刺槐林中刺槐植物叶片的δ13C值与土壤含水量呈正相关关系,但与纯刺槐林相比,混合人工林中的关系较弱(混合人工林:R2=0.25,P=0.06,纯刺槐林:R2=0.53,P=0.002)。然而,混合人工林和纯山杏林中山杏植物叶片的δ13C值与土壤含水量无显著相关性。

黄土高原不同人工林中常见树种的水分利用特征

结论

本研究利用稳定同位素技术研究了半干旱黄土高原不同人工林植物的水分利用特征。结果表明3种共存树种对不同土层的利用比例具有显著差异(P<0.05),表明这些物种具有水文生态位隔离。土壤水对不同人工林中刺槐的贡献无显著差异。然而,浅层土壤水对不同人工林中山杏的贡献具有显著差异,中层和深层土壤水对其贡献无显著差异。混合人工林中植物叶片δ13C值显著高于纯人工林,这表明混合人工林中叶片水平的WUEi明显提高。此外,与纯山杏林相比,混合人工林中山杏利用更大比例的浅层土壤水,相应地,深层土壤水消耗较少。这些结果表明人工林类型会影响植物水分来源分配,且存在对人工林类型的物种特异性响应。该研究为干旱和半干旱生态系统植树造林和生态管理提供了重要的基线信息和见解。

黄土高原不同人工林中常见树种的水分利用特征.pdf


News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910124070

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开