北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

黄土高原不同人工林中常见树种的水分利用特征

日期: 2020-05-29
浏览次数: 184

黄土高原不同人工林中常见树种的水分利用特征

摘要:了解再生物种的水分利用特征对于理解土壤与植物之间的相互作用机制以及指导水资源受限生态系统中的生态恢复策略具有深远的意义。尽管植树造林是改善退化生态系统功能和服务的重要途径,但对不同人工林类型中优势种的水分利用特征的了解甚少。作者调查了黄土高原三种代表性人工林(三种落叶树种刺槐、山杏和臭椿组成的混合人工林,纯刺槐人工林,纯山杏人工林)的植物水分利用特征。作者测量了每种人工林中优势种叶片的δ13C以及木质部和土壤(400 cm)水分的δ2H和δ18O。结果表明,混合人工林中三个主要树种在水源贡献比例上表现出显著的差异(P<0.05),表明植物具有水源隔离作用。与纯山杏人工林相比,混合人工林中的山杏利用更大比例的浅层土壤水,相应地减少了对深层土壤水的消耗。然而,在不同人工林中,刺槐水分吸收比例未表现出显著差异。混合人工林中植物叶片的δ13C显著高于纯人工林的。不同人工林中,刺槐叶片的δ13C与SWC呈正相关关系,而山杏中未观察到这种关系。结果表明人工林类型会影响植物水分利用特征,具有对人工林类型的物种特异性响应,以及种间竞争和种内竞争之间不同的水源竞争效应。

研究区域

该研究是在陕西省羊圈沟流域进行的(36°42′45″ N,109°31′45″)。该流域是黄土高原中部的黄土丘陵沟壑区。

黄土高原不同人工林中常见树种的水分利用特征

样品采集

作者于2016年植物生长季节5-9月采集了植物叶片样品用于δ13C的测定,采集木质部样品用于δ2H和δ18O的测定,采集了0-400 cm的土壤样品共630个,用于土壤含水量和土壤水δ2H和δ18O的测定,同时收集了46个降雨样品。利用LI-2100全自动真空冷凝抽提系统抽提植物木质部和土壤水分,利用LGR的液态水同位素分析仪测定土壤和降雨样品的δ2H和δ18O。黄土高原植物根系无法到达地下水深度,且该研究区域无灌溉,所以植物的主要水源是土壤水。


结果

1.土壤和木质部水的同位素组成

图2显示了不同人工林土壤水δ2H和δ18O随土壤深度和季节的变化。混合人工林中,土壤水δ18O平均值为-8.88±1.75‰,δ2H平均值为-67.14±11.86‰。纯刺槐林土壤水δ2H和δ18O平均值分别为-64.06±25.12‰和-8.71±3.53‰。纯山杏林土壤水δ2H和δ18O平均值分别为-67.78±12.57‰和 -8.66±2.13‰。土壤水同位素沿土壤剖面表现出明显的变化。浅层土壤水同位素富集且随季节变化更大。随深度变化深层土壤水同位素贫化且随季节变化小。每种人工林土壤水同位素组成在不同季节和土壤不同深度之间显著不同(P<0.001)。然而,不同人工林土壤水同位素组成无显著差异(δ2H,P=0.052;δ18O,P=0.61)。

黄土高原不同人工林中常见树种的水分利用特征

木质部水同位素组成随季节和物种变化。混合人工林中,刺槐木质部水δ18O平均值为-8.41±0.72‰,δ2H平均值为-67.57±4.37‰,山杏木质部水δ18O平均值为-7.21±1.42‰,δ2H平均值为-59.68±7.42‰,臭椿木质部水δ18O平均值为-7.72±0.89‰,δ2H平均值为-64.53±4.56‰。纯刺槐林木质部水δ18O变化范围为-9.35~-5.98‰,δ2H变化范围为-75.36~-55.68‰。纯山杏林木质部水δ18O平均值为-7.20±1.33‰,δ2H平均值为-61.49±6.25‰。混合人工林中不同物种木质部水同位素显著不同(P<0.001)。此外,木质部水δ2H和δ18O随季节变化表现出显著差异(P<0.001)。大多数土壤水同位素位于地区大气降水线(LMVL)右侧,木质部水的δ2H和δ18O位于土壤水同位素范围内(图3),这表明植物主要从不同土壤层获取水分。

黄土高原不同人工林中常见树种的水分利用特征

2.土壤水可利用性和植物水源分配

不同人工林的SWC表现出明显的季节和垂直变化(图4)。研究期混合人工林的平均SWC是7.01±1.70%,纯刺槐林为6.68±1.46%,纯山杏林为7.13±2.19%。研究期混合人工林浅层土壤含水量最高,而纯刺槐林深层土壤含水量最低。浅层土壤水随季节波动较大,而深层土壤水随季节变化较小。不同人工林浅层和中层土壤含水量无显著差异,而深层土壤水分差异显著(P<0.001)。此外,3个人工林土壤含水量在不同季节之间差异显著(P<0.01)。总而言之,不同人工林之间土壤水分存在显著差异(P<0.05)。

黄土高原不同人工林中常见树种的水分利用特征

生长季植物主要吸收浅层和中层土壤水(图5)。混合人工林中刺槐74.86%的水分以及臭椿75.62%的水分均来源于浅层和中层土壤水。而山杏吸收最大比例的浅层土壤水(60.96%)。在整个生长季,中层和深层土壤水对纯刺槐林的贡献比例分别为32.88%和27.14%。浅层和中层土壤水对纯山杏林的贡献比例分别为43.58%和32.12%。混合人工林中,不同月份之间3个物种水分吸收比例具有显著差异(P<0.05)。混合人工林和纯刺槐林中刺槐从不同土壤层吸收的水分比例无显著差异。然而,混合人工林和纯山杏林中山杏对浅层土壤水分利用比例存在显著差异(P<0.05),对中层和深层土壤水分的利用无显著差异。此外,不同季节之间浅层、中层和深层土壤水对混合人工林中臭椿以及纯山杏林的贡献比例无显著差异。

黄土高原不同人工林中常见树种的水分利用特征

3.植物叶片的δ13C值

图6显示了采样期间植物叶片的δ13C值随季节和植物物种的变化。混合人工林中刺槐,山杏和臭椿植物叶片δ13C平均值分别为-26.77±0.58‰,-26.28±0.54‰和-26.64±0.75‰。纯山杏林植物叶片δ13C值低于混合人工林。采样期间纯刺槐林植物叶片δ13C值最低(-28.00±0.80‰)。总而言之,不同季节,不同物种之间植物叶片δ13C值具有显著差异(P<0.05)。混合人工林中,山杏植物叶片δ13C值显著不同于刺槐和臭椿,且表现出显著的季节变化。此外,混合人工林和纯刺槐林中的刺槐植物叶片δ13C值表现出显著差异(P<0.001)。混合人工林和纯山杏林中的山杏植物叶片δ13C值也表现出显著差异(P<0.001)。

黄土高原不同人工林中常见树种的水分利用特征

4.植物叶片δ13C值与土壤含水量之间的关系

如图7所示,混合人工林中刺槐植物叶片δ13C值与土壤含水量的关系与纯刺槐林不一致。尽管混合人工林和纯刺槐林中刺槐植物叶片的δ13C值与土壤含水量呈正相关关系,但与纯刺槐林相比,混合人工林中的关系较弱(混合人工林:R2=0.25,P=0.06,纯刺槐林:R2=0.53,P=0.002)。然而,混合人工林和纯山杏林中山杏植物叶片的δ13C值与土壤含水量无显著相关性。

黄土高原不同人工林中常见树种的水分利用特征

结论

本研究利用稳定同位素技术研究了半干旱黄土高原不同人工林植物的水分利用特征。结果表明3种共存树种对不同土层的利用比例具有显著差异(P<0.05),表明这些物种具有水文生态位隔离。土壤水对不同人工林中刺槐的贡献无显著差异。然而,浅层土壤水对不同人工林中山杏的贡献具有显著差异,中层和深层土壤水对其贡献无显著差异。混合人工林中植物叶片δ13C值显著高于纯人工林,这表明混合人工林中叶片水平的WUEi明显提高。此外,与纯山杏林相比,混合人工林中山杏利用更大比例的浅层土壤水,相应地,深层土壤水消耗较少。这些结果表明人工林类型会影响植物水分来源分配,且存在对人工林类型的物种特异性响应。该研究为干旱和半干旱生态系统植树造林和生态管理提供了重要的基线信息和见解。

黄土高原不同人工林中常见树种的水分利用特征.pdf


News / 相关新闻 More
2024 - 02 - 28
微塑料是指直径小于5毫米的塑料颗粒,它们主要来源于塑料制品的磨损、降解和破碎,对环境和生态系统产生了不容忽视的影响。微塑料广泛分布在河流、湖泊、海洋等水体中,对水环境会造成污染,也可被水生生物摄取,进而在食物链中传递,最终影响到人类健康。此外,微塑料还可能影响浮游动物的摄食、生长和繁殖,从而影响整个生态系统的功能。针对微塑料是否会影响生物扰动活动,国外的一组团队展开了研究。淡水沉积物中的微塑料影响主要生物扰动者在生态系统功能中的作用 微塑料(粒径≤5mm)是塑料废物中的一部分,会通过沿海径流和河流进入到海洋。根据其密度差异,或漂浮在水中或进入沉积物中。沉积物-水界面是水中生物主要活动区,通过生物地球化学过程在生态系统功能中发挥着重要作用。这些生物地球化学过程主要由微生物活动驱动,而底栖无脊椎动物生物扰动作用明显,可凭借进食、排泄、推土、掘穴以及建造洞穴、土堆和坑等行为影响各界面间...
2024 - 02 - 26
在青藏高原的腹地,巍峨的唐古拉山脉伫立于世界之巅,其冰川如同大自然的年轮,默默记录着地球气候的每一次微妙变化。冰川之中,那些被冰封的气泡,就像是时间的容器,保存着过去气候的密码。冰芯气泡,是冰川积累过程中空气被困于冰层之中形成的。它们不仅仅是简单的空气囊泡,而是携带着过去气候信息的宝贵资源。当雪花飘落并逐渐积累成冰时,其中的空气被封存,形成了气泡。这些气泡中的空气成分,包括温室气体如二氧化碳和甲烷,以及它们的浓度,都是反映当时大气成分的重要指标。科学家们通过分析这些冰芯中的气泡,揭示了气候变化的历史,而冰芯中的δ18O值更是成为了解这一历史的关键线索。青藏高原中部冰芯气泡δ18O指示晚全新世冰川变化 冰芯中的气泡是冰初形成时的地球大气,蕴含了关于过去的无穷讯息,是研究古大气环境最直接的方法,且已广泛用于区域或全球气候重建。极地和高山冰川冰芯中空气含量的变化除了与积雪速率和气温变化...
2024 - 02 - 21
肉类富含丰富的蛋白质和营养物质,不仅能够满足我们的味蕾,还能够提供我们身体所需的能量和营养。随着肉类需求的增加,大规模的肉类生产和运输过程中,肉类的速冻可以一定程度保持食物的新鲜度和口感。然而,关于速冻解冻的肉类,和新鲜肉类的混淆,让人难以分辨。首尔大学的研究人员利用高光谱成像技术,做了相关的研究。使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类由于对安全、可食用肉类的需求的不断增加,冷冻储存技术得到了不断改进。然而目前存在解冻肉在处理和销售过程中被进行了错误的标记,宣称为新鲜肉类,这可能导致消费者受到误导或产生安全隐患。在这项研究中,使用高光谱图像数据构建了一个机器学习(ML)模型,用于区分新鲜冷藏、长期冷藏和解冻的牛肉样本。通过四种预处理方法,共准备了五个数据集来构建ML模型。使用PLS-DA和SVM技术构建了模型,其中应用散点校正和RBF核函数的SVM模型性能最佳。结果表明,利用高...
2024 - 01 - 30
水是地球上最丰富的天然资源之一,它是所有生物体的基本需求。水在地球上循环的过程中,植物水分吸收与蒸腾演绎着重要的角色。植物通过根系吸收水分,并将水分输送到植物的各个部位。植物通过蒸腾作用释放水分到大气中,形成了大气中的水蒸气。植物水分的来源和分配是植物生长和发育过程中的重要环节,也是相关科研的重点,水同位素技术成为科研过程中十分重要的一种科研手段。今天推荐给大家的优秀文章与此相关。利用同位素技术解析植物水分来源的不确定性因为蒸腾占据了61%-65%的陆地生态系统蒸散量,植物水分吸收在全球水循环中发挥着重要作用。植物是土壤和大气水文过程的纽带,这就是实施植物恢复可以改善区域环境的原因之一。在此背景下,研究植物水源划分为如何提高植被生产力和水资源可持续管理提供重要信息。因为植物和环境条件相互作用,水分吸收是一个复杂的过程,这使得植物水源分配变得复杂。近几十年来,同位素广泛应用于植物水源划分,因...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开