北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

理解北极苔原的甲烷预算

日期: 2020-07-30
浏览次数: 159

理解北极苔原的甲烷预算

北极苔原位于北半球,是多风无树的平原。因其温度低,生长季短,在冬季土壤下层(向下25-90 cm)被永久冻结(“多年冻土层”),阻碍了树木的生长。在夏季,多年冻土层融化仅足够用于植物的生长和繁殖,由于下层土壤冻结,水分无法下沉并形成湖泊和沼泽。苔原冻土地区占世界土壤结合碳的很大一部分(是当今大气中碳的1.5倍),湖泊和湿地中植被腐烂会产生CH4。过去几十年,人们认为北极苔原是碳汇,因为它可以通过光合作用捕获大气中大量的CO2,而如今受气候变化的影响,它已经成为重要的碳源,将温室气体释放到大气中。因此,对环境科学家而言,理解该生态系统中季节,植被,气候因子对CH4排放的影响至关重要。

大量研究表明,由于多年冻土层的季节性融化,在北极地区夏季CH4从大量不稳定有机质中排放。然而,很少有研究去理解秋季,冬季和春季(代表了北极地区一年中的70-80%)的CH4排放现象。以往的几个研究表明秋季甲烷通量高,而春冬季节无甲烷通量。在所附的文章中“ Cold season emissions dominate the Arctic tundra methane budget”,一组国际跨学科的科学家们报道了全年CH4排放,包括从沿着阿拉斯加北坡300公里纬度样带上的5个阿拉斯加北极苔原涡度协方差(EC)站点测得的通量数据,旨在理解CH4通量的季节性变化。此项目中,EC塔上安装了开路分析仪和闭路LGR-ICOS快速温室气体分析仪(GLA331-GGA,前身为FGGA-24EP)以在连续多年冻土层上进行全年CH4涡度通量观测。

理解北极苔原的甲烷预算

ABB LGR-ICOS 加强型机载温室气体分析仪(GLA331-GGA)


合并开路和闭路仪器中CH4的测量值并平均以产生半小时的涡度通量值。综合估算了5个站点从2013年6月到2015年1月的CH4通量,获取了两个夏-秋-冬周期数据,具有高时间分辨率。

理解北极苔原的甲烷预算

A-E:北坡5个EC站点测得的甲烷通量(mg C- CH4 m−2 h−1)。

F:阿拉斯加地图,表明站点位置和表面淹没的百分比(Zona et al.)。


这些观测结果表明长期以来,冷季(9-5月)CH4排放量与夏季排放量相当或更高。在最干燥的地区,冷季排放量主导了全年的CH4预算,这比以前在其它连续多年冻土地区模型中预测的贡献(35%)明显更高,同时也高于阿拉斯加北部(40%)的全年观测值数。

作者也研究了土壤状况对CH4通量变化的影响(淹水和温度)。

理解北极苔原的甲烷预算

在所示时段内,阿拉斯加北坡3个EC站点甲烷通量随土壤温度的变化。黑色箭头指示每个阶段的季节性进程(Zona et al.)。


他们发现在低淹水的EC站点CH4排放量最高,这与常规预测模型模拟和预测的淹水环境中CH4排放量最高的结果相矛盾。在土壤温度对CH4通量的影响上,作者假设冷季大量CH4排放与延长的“零点幕”期有关,该时期土壤和地下温度都保持在0℃附近,表明总排放量对土壤环境以及相关因素(例如降雪深度)非常敏感。

理解北极苔原的甲烷预算

假设土壤物理过程会影响CH4产生和氧化示意图,该过程与季节有关。浅蓝色表示土壤温度较低,浅棕色表示土壤温度较高;箭头指向夏季解冻锋面的方向,冷季冻结锋面的方向(Zona et al.)。


作者认为在零点幕期,即使CH4生成量较低,土壤近地表冻结降低了CH4氧化,导致了大量的CH4排放。零点幕期持续时间比生长季长,并且当持续时间延长时,如深厚的积雪会延长融化深度,CH4排放量增加。

总之,研究表明冷季(9-5月)CH4排放量占阿拉斯加苔原全年CH4排放量的50%以上,且这些排放量对土壤环境和相关的因素非常敏感。同时表明了,预计北极地区未来会持续变暖和积雪,这将导致全球CH4排放量的显著增加,且该过程中冷季排放量(9-5月)重要性增加。


点击阅读原文

Cold season emissions dominate the Arctic tundra methane budget.pdf



美国和英国研究团队在同一EC阿拉斯加4个站点上进行了另一项研究,解决了北极苔原空间异质性的难题。他们测量了土壤CH4和CO2通量以及一系列环境变量,旨在理解北极生态系统植被类型与CH4排放的关系和控制机制。该研究成果报道在所附的文章中“Vegetation Type Dominates the Spatial Variability in CH4 Emissions Across Multiple Arctic Tundra Landscapes”。

为了能在生长季早期安装通量环,作者利用每个站点的航拍图进行了调查,并检查了所有站点的植被地图以及描述,以最大程度与现存分类保持一致性。他们确实了EC研究地区6种不同的植被类型:

理解北极苔原的甲烷预算

丛生苔草(a)

苔藓-地衣(b)

苔藓-灌木(c)

湿苔草(d)

禾本科干杂草(e)

苔藓(f)


在融化季节(2014年6月)安装PVC环(高15 cm/直径20 cm)对选定植被类型的土壤样品进行分离,并在高峰季节(2014年7月)对植被进行调查。每个植被类型共放置6或7个(取决于站点)重复环,深度大约15 cm,所有站点总共91个环。

LGR的便携式温室气体分析仪(GLA132-GGA,前身是UGGA)依次连接各种植被环,使用圆柱形有机玻璃气室通过进口和出口管在闭路循环模式下以1HZ采样率测量CH4和CO2通量。

理解北极苔原的甲烷预算

ABB LGR便携式温室气体分析仪(GLA132-GGA)


在每个采样点,有机玻璃气室放置2 min,以实现气室顶空CH4和CO2浓度的稳定增加。测量后,移开气室以重建环境气体浓度,用黑色毛毡盖覆盖,再放回到环上2 min。

理解北极苔原的甲烷预算

气室通量测量设置示意图,包括气室,环尺寸以及所用设备的详细信息


用一个透明的气室测量净生态系统碳交换量(NEE),用不透明的气室测量生态系统的呼吸量(ER),以计算代表生态系统产生碳生物量总量的总初级生产力(GPP)。(GPP=NEE+ER)。利用线性斜率拟合技术计算气体通量。所有样地都在一天的相同时间测量(10 am-3 pm)。

理解北极苔原的甲烷预算

2014年夏季在4个阿拉斯加北极站点测得的总初级生产力(GPP)通量(Davidson et al.)


利用该设备,科学家们在所有样地的观测结果发现,湿苔草的平均CH4排放量最高,其它植被类型排放量较低。此外,还发现地下水位高于或位于土壤表面的样地CH4排放量最高。作者建立了几个多元回归模型以确定CH4通量的驱动因子,并检验GPP,溶解性有机碳和CH4通量之间的关系。他们发现,一个高度简化的植被分类仅包括3种植被类型(湿苔草,丛生苔草和其它),解释了整个样带中54%的CH4通量变化。其表现几乎与一个更复杂的模型一样,该模型包括多种生物和环境驱动因子例如地下水位,苔草高度以及土壤水分(解释58%的CH4通量变化)。

理解北极苔原的甲烷预算

A:CH4通量,B:2014年夏季在4个阿拉斯加北极站点测得的地下水位深度(正值=积水,负值=水位在土壤表层以下)。条形图是每个日期的平均值±标准误差(Davidson et al.)


作者得出的结论是植被是主要变量,解释了来自多个植被群落,环境状况以及地理位置的各种苔原类型CH4通量的空间异质性。湿苔草群落主导CH4排放,而其他植被类型排放率更低。这些发现表明了植被组成作为与CH4通量有关的条件的综合度量的重要性。

多年来,LGR-ICOS仪器在分析性能,易用性以及耐用性方面享有很高的声誉。其专利离轴积分腔输出光谱技术(OA-ICOS)已在多家同行评审的出版物中得到了证明与肯定。LGR ICOS分析仪可以在多样化的环境中收集科学数据,在海底1000 m处,积雪覆盖的森林,北极苔原,亚马逊河漫滩平原,沙漠,飞机,直升机或无人机上,运行的汽车或卡车上,火车屋顶上或极地海洋巡游的研究船上都可以看到其身影。

理解北极苔原的甲烷预算

ABB LGR-ICOS仪器的应用场景

点击阅读原文

Vegetation Type Dominates the Spatial Variability in CH4 Emissions Across Multiple Arctic Tundra Landscapes.pdf

News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910124070

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开