北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

日期: 2020-07-30
浏览次数: 133

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

雪反照率可用于估算雪崩,美国国家航空航天局机载降雪观测台将其与激光雷达联合用于测量雪深。

反照率(或“白度”)是单位时间,单位面积上各方向出射的总辐射能量与入射的总辐射能量之比,其测量范围从0(对应于吸收所有入射辐射的黑体)到1(对应于反射所有入射辐射体)。根据Wikipedia的说法“雪反照率变化很大,可以从0.9(刚落下的雪)到0.4(融化的雪)到0.2(脏雪)。南极洲平均雪反照率略高于0.8。如果积雪区域边缘变暖,雪易于融化,会降低反照率,因此积雪吸收了更多的辐射导致了更多的融雪。”

在所附的文章中“The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo”特别提到了ITRES CASI在测量雪反照率上的重要性。


【摘要】

在世界许多山区,积雪覆盖和融化主导着区域气候和水资源。山区的融雪时间和量级主要受太阳辐射的吸收和雪水当量(SWE)的分布控制,但是即使在全球仪器设备最完善的山区,对其了解和认识仍不充分。本研究中我们描述并介绍了机载降雪观测台(ASO)的结果,它耦合了成像光谱仪,扫描激光雷达以及积雪分布模型以测定积雪光谱反照率/宽波段反照率和雪深/SWE。在该区域模拟积雪密度,将雪深转化为SWE。本文介绍的结果是遥感雪反照率和雪深/SWE在量化季节性积雪中存储水量上的首次应用。为冰冻圈科学研究提供了前所未有的积雪性质和分布知识,并为未来水管理模型和系统提供空间上全面且可靠的输入。ASO提供的每周SWE值表明,山区水文科学家和资源管理者可获得的信息急剧增加。

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

彩色:ASO扫描激光雷达(Riegl Q1560);灰度:成像光谱仪(Itres CASI-1500)

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

左侧和右侧分别显示了ASO的雷达和光谱仪(CASI)管线

据美国国家航空航天局网站称:“沙漠系统温度升高会增加山区积雪的粉尘负荷,从而降低积雪反照率并加速融雪径流。了解融雪径流和时间两个最重要的特性是雪水当量(SWE)和雪反照率的时空分布。尽管其在控制径流量和时间的重要性,但在美国(甚至是全球大部分地区)积雪反照率和SWE的量化程度仍然很差,导致径流模型约束性很差。”

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率

(A)雪深图;(B)雪密度图(n=180);(C)雪水当量;(D)雪反照率;

结论】

尽管我们对雪物理性质,雪水文学以及冰川学方面有了更多的理解,但到目前为止,我们量化雪空间分布的能力相对较简单。因此,径流和水可利用性的估计和预测必须依赖于根据往年观测值校正的索引关系。这些方法极易受到异常条件的影响-在记录时期内条件不佳-在日益变化的新的定量测量降雪的能力至关重要。

ASO通过高分辨率直接测量雪深,捕获了山区流域积雪空间变异性的主要来源,并结合积雪密度观测和建模,重复估算了第一个流域范围的雪水当量。ASO还量化了雪的属性中,影响融雪速率的决定因素,即雪反照率。总之,ASO方法提供了一条新的途径,可以在降雪为主的地区推进水文科学的发展,并实现下一代水资源管理的适应性。


点击阅读原文

机载降雪观测台:融合扫描激光雷达,成像光谱仪以及物理模型用于绘制雪水当量和雪反照率.pdf


News / 相关新闻 More
2024 - 06 - 11
摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,...
2024 - 05 - 20
北京,这座拥有千年历史的城市,见证了无数历史的变迁和现代文明的飞跃。然而,随之而来的是空气质量问题,尤其是由机动车尾气排放引发的大气污染。据相关研究显示,机动车尾气中含有大量的有害物质,包括一氧化碳、氮氧化物、挥发性有机化合物以及细颗粒物等,这些污染物不仅对人体健康构成威胁,还会导致城市雾霾的形成,影响城市的视觉美感和居民的生活质量。在众多污染物中,氨气作为一种典型的碱性气体,其来源多样,包括农业活动、工业生产、生活垃圾处理等。在北京市城区车辆排放是否是氨气的主要来源?据此,来自中国科学院大气物理研究所的研究团队进行了相关研究。北京城区NH3排放源-机动车尾气背景介绍氨气是大气中重要的碱性气体,在中和酸性气体,形成二次气溶胶方面发挥着重要作用。NH3在大气中滞留时间短,因此NH3浓度日变化显著。一般特征为在早上大约07:00~10:00,NH3浓度到达峰值。然而以前的研究局限于单一季节,无...
2024 - 05 - 17
菱透浮萍绿锦池,夏莺千啭弄蔷薇透过浮萍,诗人的眼里看到的是其和水中菱叶相映成趣的景象,是夏日池塘的勃勃生机。而在科研学者的眼中,看到的是天南星目浮萍科的水生植物,是潜藏在水稻种植中的双刃剑。营养物质的争夺?自然光照的遮挡?生存空间的占据?在一片生机之下,浮萍和水稻之间塑造着另一番景象..由于气候变暖/或灌溉水富营养化的影响,稻田中的浮萍(DGP)大幅增加。本研究考虑到生态因素、光合能力、光谱变化和植物生长等因素,对三个代表性水稻品种进行了田间试验,以确定DGP对水稻产量的影响。结果表明,DGP显著降低pH值0.6,日水温降低0.6℃,水稻抽穗期提前1.6天,并平均增加了叶片的SPAD和光合速率分别为10.8%和14.4%。DGP还显着提高了RARSc、MTCI、GCI、NDVI705、CI、CIrededge、mND705、SR705、GM等多种植被指数的数值,并且水稻冠层反射光谱的一阶导...
2024 - 05 - 08
在城市污水处理与农村生活废弃物管理中,化粪池作为一种常见的粪便处理设施,承担着重要角色。然而,化粪池在分解过程中会产生包括氨气在内的恶臭气体,这些气体不仅对周围环境造成异味污染,还可能对人体健康构成威胁。以下论文中,来自上海市环境科学研究院的研究团进行了化粪池的相关研究,以降低化粪池氨气排放对环境的负面影响,促进生态平衡和可持续发展,为相关领域的政策制定和技术改进提供理论依据和实践指导。中国城市潜在NH3排放源-化粪池背景介绍在中国高度污染的城市大气中,大气新粒子形成可能是由于硫酸和胺的成核机制,而目前尚不清楚为什么中国的城市大气中富含胺。在城市中,尽管抽水马桶的普及率接近100%,但人类排泄物大多储存在建筑物下面的化粪池中,而不是直接运往污水处理厂。化粪池中大量NH3是微生物分解的产物,可以通过连接屋顶的塑料管释放到大气中。鉴于胺与氨是共同排放的,有理由认为人类排泄物也可能是中国城市中胺...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开