北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘

日期: 2024-04-15
浏览次数: 15

中国农业发生于新石器时代。中国农业的生产结构包括种植业、林业、畜牧业、渔业和副业;但数千年来一直以种植业为主。

东北地区的黑土地,是宝贵的农业资源。黑土地的土壤富含有机质,深黑色的沃土,沉甸甸的感觉让人感受到这片土地的肥沃。

在现代农业生产中,科技的应用在这片沃土上也发挥着至关重要的作用,科研团队利用机载高光谱对黑土地的土壤有机质做了相关研究。

使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘

使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘

快速获取田间尺度土壤有机质(SOM)的高分辨率空间分布对于精准农业至关重要。无人机成像高光谱技术以其高空间分辨率和时效性,可以填补地面监测和遥感的研究空白。本研究旨在测试在中国东北典型低地势黑土地区使用无人机高光谱数据(400–1000 nm)和小型校准样本集进行1 m分辨率SOM绘图的可行性。

该实验在大约20公顷的土地上进行。为了进行校准,使用 100 × 100 m 网格采样策略收集了 20 个样品,同时随机收集了 20 个样品进行独立验证。无人机捕获空间分辨率为0.05×0.05 m的高光谱图像。

然后对每 1 × 1 m 内提取的光谱进行平均以代表该网格的光谱。在应用各种光谱预处理(包括吸光度转换、多重散射校正、Savitzky-Golay 平滑滤波和一阶微分)后,SOM 光谱相关系数的绝对最大值从 0.41 增加到 0.58。最佳随机森林(RF)模型的重要性分析表明,SOM 的特征波段位于 450-600 和 750-900 nm 区域。当使用RF模型时,无人机高光谱数据(UAV-RF)能够成功预测SOM,R 为0.53,RMSE为1.48 g kg−1。

然后将预测精度与使用相同数量校准样本的普通克里金法(OK)和基于近端传感的射频模型(PS-RF)获得的预测精度进行比较。然而,由于采样密度较低,OK 方法无法预测 SOM 精度(RMSE = 2.17 g kg−1;R2 = 0.02)。半协方差函数无法有效描述SOM的空间变异性。当采样密度增加到50×50 m时,OK成功预测了SOM,RMSE = 1.37 g kg−1,R2 = 0.59,其结果与UAV-RF的结果相当。PS-RF的预测精度与UAV-RF基本一致,RMSE值分别为1.41 g kg−1和1.48 g kg−1,R2值分别为0.57和0.53,表明基于UAV的SOM预测是可行的。

此外,与PS平台相比,无人机高光谱技术可以同时提供数十甚至数百个连续波段的光谱信息和空间信息。该研究为进一步研究和开发无人机高光谱技术进行少量样本精细尺度SOM测绘提供了参考。

使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘

研究区土壤样本分布

研究区域位于中国吉林省梨树县,面积20公顷。该地区属季风气候,年平均降水量553.5毫米,平均气温6.5℃。此外,它的特点是地势平坦,平均海拔160 m。由于这些特征,该地区成为北半球三大富含有机质的黑土地之一,主要农作物是大豆。

使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘

Resonon-Pika-L 机载高光谱成像仪

本研究采用Resonon公司的Resonon-Pika-L高光谱成像仪由高光谱成像光谱仪、六旋翼无人机、GPS和计算机组成。于2020年6月15日获取了覆盖整个研究区、像素大小为0.05×0.05 m的高光谱图像。高光谱图像提取的光谱范围为400~1000 nm,光谱分辨率为2.1 nm。

使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘

经过 (a) 吸光度转换、(b) 乘性散射校正、(c) Savitzky–Golay 后土壤有机质 (SOM) 与土壤光谱特征的相关系数(窗口大小为 5,拟合次数为 2) )和(d)一阶导数方法。

根据Pearson相关系数的绝对值评价预处理方法的性能,以选择最佳的预处理方法组合。如所示,基于吸光度转换的MSC后,最小相关系数值发生变化(450-500 nm处为-0.4-0.6),总体相关系数在600-700 nm处增加,相关系数绝对值最大 在 700–800 nm 处增加,相关系数发生变化(800–900 nm 处为 -0.35–0.3 至 -0.5–0.3)。

使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘

使用无人机高光谱 (UAV-RF) 预测土壤有机质 (SOM) 的 RF 模型的重要性分析 (a) 和图 (b)

本研究比较了使用无人机高光谱数据、观测到的土壤数据和 RF 模型进行田间尺度 SOM 预测的 OK 技术。

研究结果如下

01 吸光度转换、MSC、SG 和 FD 技术对SOM的预测效果良好。经过这些预处理后,光谱和 SOM 之间的绝对最大相关系数从 0.41 增加到 0.58。

02 SOM的特征波段位于450-600 nm和750-900 nm,这可能是由于O-H、C-H和N-H特征官能团的振动频率造成的。

03 采用100 m × 100 m网格采样设计,UAV-RF模型预测SOM的R2为0.53,RMSE为1.48 g kg−1,而采用相同采样策略的OK方法未能预测SOM(RMSE = 2.17g kg−1;R2 = 0.02)。预测精度较差是因为样本密度低从而削弱了半协方差函数描述SOM空间变异性的能力。只有当采样密度增加时,才能使用 OK 成功预测 SOM,其结果与UAV-RF相当。

04 基于PS-RF的SOM预测结果与基于UAV-RF的预测结果基本一致,RMSE值为1.41 g kg−1和1.48 g kg−1,R2值为0.57和0.53。这些研究结果为未来研究和发展无人机高光谱技术在减少样本量的情况下进行SOM预测提供了参考。


请点击下方链接,阅读原文:

https://mp.weixin.qq.com/s/rQg24iUDAQZruT1teTP2Kg


News / 相关新闻 More
2024 - 05 - 20
北京,这座拥有千年历史的城市,见证了无数历史的变迁和现代文明的飞跃。然而,随之而来的是空气质量问题,尤其是由机动车尾气排放引发的大气污染。据相关研究显示,机动车尾气中含有大量的有害物质,包括一氧化碳、氮氧化物、挥发性有机化合物以及细颗粒物等,这些污染物不仅对人体健康构成威胁,还会导致城市雾霾的形成,影响城市的视觉美感和居民的生活质量。在众多污染物中,氨气作为一种典型的碱性气体,其来源多样,包括农业活动、工业生产、生活垃圾处理等。在北京市城区车辆排放是否是氨气的主要来源?据此,来自中国科学院大气物理研究所的研究团队进行了相关研究。北京城区NH3排放源-机动车尾气背景介绍氨气是大气中重要的碱性气体,在中和酸性气体,形成二次气溶胶方面发挥着重要作用。NH3在大气中滞留时间短,因此NH3浓度日变化显著。一般特征为在早上大约07:00~10:00,NH3浓度到达峰值。然而以前的研究局限于单一季节,无...
2024 - 05 - 17
菱透浮萍绿锦池,夏莺千啭弄蔷薇透过浮萍,诗人的眼里看到的是其和水中菱叶相映成趣的景象,是夏日池塘的勃勃生机。而在科研学者的眼中,看到的是天南星目浮萍科的水生植物,是潜藏在水稻种植中的双刃剑。营养物质的争夺?自然光照的遮挡?生存空间的占据?在一片生机之下,浮萍和水稻之间塑造着另一番景象..由于气候变暖/或灌溉水富营养化的影响,稻田中的浮萍(DGP)大幅增加。本研究考虑到生态因素、光合能力、光谱变化和植物生长等因素,对三个代表性水稻品种进行了田间试验,以确定DGP对水稻产量的影响。结果表明,DGP显著降低pH值0.6,日水温降低0.6℃,水稻抽穗期提前1.6天,并平均增加了叶片的SPAD和光合速率分别为10.8%和14.4%。DGP还显着提高了RARSc、MTCI、GCI、NDVI705、CI、CIrededge、mND705、SR705、GM等多种植被指数的数值,并且水稻冠层反射光谱的一阶导...
2024 - 05 - 08
在城市污水处理与农村生活废弃物管理中,化粪池作为一种常见的粪便处理设施,承担着重要角色。然而,化粪池在分解过程中会产生包括氨气在内的恶臭气体,这些气体不仅对周围环境造成异味污染,还可能对人体健康构成威胁。以下论文中,来自上海市环境科学研究院的研究团进行了化粪池的相关研究,以降低化粪池氨气排放对环境的负面影响,促进生态平衡和可持续发展,为相关领域的政策制定和技术改进提供理论依据和实践指导。中国城市潜在NH3排放源-化粪池背景介绍在中国高度污染的城市大气中,大气新粒子形成可能是由于硫酸和胺的成核机制,而目前尚不清楚为什么中国的城市大气中富含胺。在城市中,尽管抽水马桶的普及率接近100%,但人类排泄物大多储存在建筑物下面的化粪池中,而不是直接运往污水处理厂。化粪池中大量NH3是微生物分解的产物,可以通过连接屋顶的塑料管释放到大气中。鉴于胺与氨是共同排放的,有理由认为人类排泄物也可能是中国城市中胺...
2024 - 04 - 26
目录1. 后处理方法介绍1.1 Ustar阈值判断(主要针对夜间NEE)1.2 数据插补1.2.1 查表法插补(LUT法)1.2.2 平均日变化曲线法(MDC法)1.2.3 样本边缘分布采样法(MDS法)1.3 数据拆分2. REddyProc包处理数据格式介绍2.1 输入需要处理数据的格式2.2 输出处理完毕数据的格式3. REddyProc包的R代码介绍3.1 准备—R程序包安装、运行、目标数据导入和调整3.2 数据后处理3.2.1 Ustar阈值计算3.2.2 数据插补3.2.3 NEE拆分插补3.2.4整合处理结果并输出数据涡动通量数据处理分为在线处理(online-processing)和后处理(post-processing)。其中在线处理针对高频通量数据(e.g.10Hz data)通过一系列标准方法进行计算,最后得到带有质量评价的低频通量数据(e.g.half-hour d...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开