北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

日期: 2018-10-09
浏览次数: 636

本文旨在利用高光谱数据建立一个准确、可解释的植物病害识别模型。由真菌引起的大豆炭腐病是一种严重影响大豆产量的世界性病害。在383-1032 nm范围内,Resonon高光谱成像仪在240个不同的波长处捕获高光谱图像。针对大豆炭腐病,科学家建立了3D卷积分网络模型,模型分类精度为95.73%,并利用可视化显著图检验训练模型、敏感像素位置以及分类的特征敏感波段,发现:敏感特征波段为733 nm,这和常用的鉴别植物健康程度的特征波段范围(700-1000nm)是一致的。

 

实验:

感染炭腐病的大豆:分别在第3、6、9、12和15天采集健康的和受感染的大豆茎秆样品,在测量病害程度之前,实时采集健康的和收到感染的茎秆的高光谱图像。

测量仪器:美国Resonon高光谱成像仪,型号:Pika XC

(包含安装支架、移动平台、操作软件和2个70w卤素灯)

Pika XC性能:

光谱通道数:240,波段范围,400-1000 nm,分辨率:2.5 nm。

 

平台系统如下图(a)所示:

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

(a)    室内高光谱成像系统

(b)    不同光谱波段的大豆茎秆样品高光谱图像

(c)     大豆茎秆的内部和外部RGB图像的病害程度比较

3D-CNN模型由两个连接的卷积分模型组成,其中,一个小的构架用于防止训练模型过饱和。2个图层(3*3mm空间维度,16个波段的光谱维度)作为第一个卷积分分层,4个3*3*16的图层作为第二个卷积分层,修正线性输入模型作为输出层。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型 

结果分析:

1.    539个测试图像用于3d-cnn模型的精度评估。

如表1所示:模型分类准确为95.73%,0.92的分类精度也体现了不同病害阶段的普适性。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

2.    可视化显著图评价

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

我们可视化了用显著图分类出来的部分图像, 最大分类得分的输入图像用于判别敏感像素位置。图三为感染病害和健康图像的显著图。每个像素的级别大小用于评价其在分类过程中的重要性。受感染茎秆图像的显著图比图像中严重感染区域(红棕色)对应的位置具有更高的数值。这表明,严重感染的图像区域包含最敏感的像素位置,可以预测受感染分数。无论是健康图像还是感染图像,显著图高值都集中在茎的中部区域。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

测试图像的直方图数据,代表了每个波长最大显著图的图像像元百分比C*=130(733 nm)

1.    在测试数据中,近红外区的波长733 nm (C*=130)是所有波长中最敏感的;

2.    在703 ~ 744 nm的光谱范围内,15个波长在测试图像的像素位置中占33%,是梯度值的最大值;

3.    受感染样本的可见光谱波长(400-700 nm)比健康样本更敏感。

 

结论

数据结果证明了3D-CDD模型可以有效地学习高维的高光谱数据,应用于大豆炭腐病鉴别领域。从生理学机理角度,可视化显著图解释了高光谱特征波段在分类中的重要性,使模型更具有说服力。因此,我们对于该模型更加自信,在未来,基于鲁棒可解释机制的波段选择将有助于高光谱数据的降维,也将有助于设计高通量表型的多光谱摄成像系统。


请点击如下链接,阅读文献:

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

News / 相关新闻 More
2024 - 02 - 28
微塑料是指直径小于5毫米的塑料颗粒,它们主要来源于塑料制品的磨损、降解和破碎,对环境和生态系统产生了不容忽视的影响。微塑料广泛分布在河流、湖泊、海洋等水体中,对水环境会造成污染,也可被水生生物摄取,进而在食物链中传递,最终影响到人类健康。此外,微塑料还可能影响浮游动物的摄食、生长和繁殖,从而影响整个生态系统的功能。针对微塑料是否会影响生物扰动活动,国外的一组团队展开了研究。淡水沉积物中的微塑料影响主要生物扰动者在生态系统功能中的作用 微塑料(粒径≤5mm)是塑料废物中的一部分,会通过沿海径流和河流进入到海洋。根据其密度差异,或漂浮在水中或进入沉积物中。沉积物-水界面是水中生物主要活动区,通过生物地球化学过程在生态系统功能中发挥着重要作用。这些生物地球化学过程主要由微生物活动驱动,而底栖无脊椎动物生物扰动作用明显,可凭借进食、排泄、推土、掘穴以及建造洞穴、土堆和坑等行为影响各界面间...
2024 - 02 - 26
在青藏高原的腹地,巍峨的唐古拉山脉伫立于世界之巅,其冰川如同大自然的年轮,默默记录着地球气候的每一次微妙变化。冰川之中,那些被冰封的气泡,就像是时间的容器,保存着过去气候的密码。冰芯气泡,是冰川积累过程中空气被困于冰层之中形成的。它们不仅仅是简单的空气囊泡,而是携带着过去气候信息的宝贵资源。当雪花飘落并逐渐积累成冰时,其中的空气被封存,形成了气泡。这些气泡中的空气成分,包括温室气体如二氧化碳和甲烷,以及它们的浓度,都是反映当时大气成分的重要指标。科学家们通过分析这些冰芯中的气泡,揭示了气候变化的历史,而冰芯中的δ18O值更是成为了解这一历史的关键线索。青藏高原中部冰芯气泡δ18O指示晚全新世冰川变化 冰芯中的气泡是冰初形成时的地球大气,蕴含了关于过去的无穷讯息,是研究古大气环境最直接的方法,且已广泛用于区域或全球气候重建。极地和高山冰川冰芯中空气含量的变化除了与积雪速率和气温变化...
2024 - 02 - 21
肉类富含丰富的蛋白质和营养物质,不仅能够满足我们的味蕾,还能够提供我们身体所需的能量和营养。随着肉类需求的增加,大规模的肉类生产和运输过程中,肉类的速冻可以一定程度保持食物的新鲜度和口感。然而,关于速冻解冻的肉类,和新鲜肉类的混淆,让人难以分辨。首尔大学的研究人员利用高光谱成像技术,做了相关的研究。使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类由于对安全、可食用肉类的需求的不断增加,冷冻储存技术得到了不断改进。然而目前存在解冻肉在处理和销售过程中被进行了错误的标记,宣称为新鲜肉类,这可能导致消费者受到误导或产生安全隐患。在这项研究中,使用高光谱图像数据构建了一个机器学习(ML)模型,用于区分新鲜冷藏、长期冷藏和解冻的牛肉样本。通过四种预处理方法,共准备了五个数据集来构建ML模型。使用PLS-DA和SVM技术构建了模型,其中应用散点校正和RBF核函数的SVM模型性能最佳。结果表明,利用高...
2024 - 01 - 30
水是地球上最丰富的天然资源之一,它是所有生物体的基本需求。水在地球上循环的过程中,植物水分吸收与蒸腾演绎着重要的角色。植物通过根系吸收水分,并将水分输送到植物的各个部位。植物通过蒸腾作用释放水分到大气中,形成了大气中的水蒸气。植物水分的来源和分配是植物生长和发育过程中的重要环节,也是相关科研的重点,水同位素技术成为科研过程中十分重要的一种科研手段。今天推荐给大家的优秀文章与此相关。利用同位素技术解析植物水分来源的不确定性因为蒸腾占据了61%-65%的陆地生态系统蒸散量,植物水分吸收在全球水循环中发挥着重要作用。植物是土壤和大气水文过程的纽带,这就是实施植物恢复可以改善区域环境的原因之一。在此背景下,研究植物水源划分为如何提高植被生产力和水资源可持续管理提供重要信息。因为植物和环境条件相互作用,水分吸收是一个复杂的过程,这使得植物水源分配变得复杂。近几十年来,同位素广泛应用于植物水源划分,因...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开