北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

日期: 2020-07-09
浏览次数: 210

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

本文旨在利用高光谱数据建立一个准确、可解释的植物病害识别模型。由真菌引起的大豆炭腐病是一种严重影响大豆产量的世界性病害。在383-1032 nm范围内,Resonon高光谱成像仪在240个不同的波长处捕获高光谱图像。针对大豆炭腐病,科学家建立了3D卷积分网络模型,模型分类精度为95.73%,并利用可视化显著图检验训练模型、敏感像素位置以及分类的特征敏感波段,发现:敏感特征波段为733 nm,这和常用的鉴别植物健康程度的特征波段范围(700-1000nm)是一致的。

【试验方法】

感染炭腐病的大豆:分别在第3691215天采集健康的和受感染的大豆茎秆样品,在测量病害程度之前,实时采集健康的和收到感染的茎秆的高光谱图像。

测量仪器:美国Resonon高光谱成像仪,型号:Pika XC (包含安装支架、移动平台、操作软件和270 w卤素灯)。

Pika XC性能:光谱通道数:240;波段范围400-1000 nm;分辨率:2.5 nm


植物病害的高光谱图像解译识别:3D-CNN与显著图模型

a)室内高光谱成像系统

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

(b)不同光谱波段的大豆茎秆样品高光谱图像 (c)大豆茎秆内外部RGB图像病害程度比较

3D-CNN模型由两个连接的卷积分模型组成,其中,一个小的构架用于防止训练模型过饱和。2个图层(3*3mm空间维度,16个波段的光谱维度)作为第一个卷积分分层,4个3*3*16的图层作为第二个卷积分层,修正线性输入模型作为输出层。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

【结果分析】

1.  539个测试图像用于3d-cnn模型的精度评估。

如表1所示:模型分类准确为95.73%0.92的分类精度也体现了不同病害阶段的普适性。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

2.  可视化显著图评价

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

我们可视化了用显著图分类出来的部分图像, 最大分类得分的输入图像用于判别敏感像素位置。图三为感染病害和健康图像的显著图。每个像素的级别大小用于评价其在分类过程中的重要性。受感染茎秆图像的显著图比图像中严重感染区域(红棕色)对应的位置具有更高的数值。这表明,严重感染的图像区域包含最敏感的像素位置,可以预测受感染分数。无论是健康图像还是感染图像,显著图高值都集中在茎的中部区域。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型


测试图像的直方图数据,代表了每个波长最大显著图的图像像元百分比C*=130 (733 nm)

1)在测试数据中,近红外区的波长733 nm (C*=130)是所有波长中最敏感的;

2)在703 ~ 744 nm的光谱范围内,15个波长在测试图像的像素位置中占33%,是梯度值的最大值;

3)受感染样本的可见光谱波长(400-700 nm)比健康样本更敏感。

【结果分析】

数据结果证明了3D-CDD模型可以有效地学习高维的高光谱数据,应用于大豆炭腐病鉴别领域。从生理学机理角度,可视化显著图解释了高光谱特征波段在分类中的重要性,使模型更具有说服力。因此,我们对于该模型更加自信,在未来,基于鲁棒可解释机制的波段选择将有助于高光谱数据的降维,也将有助于设计高通量表型分析的多光谱摄成像系统。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型.pdf


News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910124070

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开