如何使用Spectronon软件处理分析从Resonon高光谱成像系统获得的高光谱数据。
发布时间:
2023
-
12
-
20
浏览次数:27
使用室外高光谱系统同步运动平台速度和帧速率的教程。
发布时间:
2023
-
12
-
20
浏览次数:8
Resonon机载高光谱成像系统可配合无人机、有人机使用。 包含用于采集和分析高光谱数据的所有硬件和软件。机载系统可与Resonon覆盖紫外线、可见光和红外线光谱范围的任何高光谱相机一起使用。价格合理、结构紧凑、坚固耐用,图像质量卓越。
发布时间:
2023
-
12
-
20
浏览次数:9
Resonon不同型号高光谱成像仪及图像处理软件介绍
发布时间:
2023
-
12
-
20
浏览次数:7
Resonon室内台式高光谱成像系统可与任意一款Resonon高光谱成像仪一起使用,涵盖紫外线、可见光和红外线光谱范围。价格合理、结构紧凑、坚固耐用,图像质量卓越。
发布时间:
2023
-
12
-
20
浏览次数:49
柠条木是一种对水分需求较高的植物,它对土壤中的水分量非常敏感。而土壤有效水分和根系分布对柠条木质部水分有着重要的影响。当土壤中的有效水分不足时,柠条木的木质部水分会受到影响,导致植物生长缓慢甚至停滞。柠条木的根系通常较为发达,能够深入土壤中寻找水分。如果根系分布广泛且深入,那么柠条木就能够吸收到更多的水分,从而保持木质部的水分平衡。因此,保持土壤中的适当水分对于柠条木的生长至关重要。下面这篇相关论文,我们来一探究竟。土壤有效水分与根系分布的协调改变了柠条的水源分配稳定同位素已被广泛应用于根系水分吸收(RWU)的鉴定,通过将潜在水源分类为不同的端元,并评估其对木质部水分的贡献。然而,估计端元(主要是土层)的贡献通常仅基于土壤水同位素的变化。土壤有效水分和根系分布是RWU的关键限制因子,但在水源分配中很少考虑。基于土壤水分同位素平均值、土壤有效含水量(AWC)和根重密度(RWD)加权值,比较了不同土层对柠条RWU的相对贡献。我们使用三种贝叶斯混合模型(SIAR, simmr和MixSIAR)在三个不同土壤水条件的地点获得了这些值(分别为平均值和加权贡献)。我们计算了平均和加权贡献(DC)的差异以及DC绝对值的累积(AADC),以分析它们之间的差异及其与AWC和RWD的关系。加权和平均贡献因地点和模型而异。我们得到以下AADC值:站点1-3使用SIAR分别为27.8%和11%;使用sim...
发布时间:
2023
-
12
-
20
浏览次数:13
Resonon机载高光谱成像系统可配合无人机、有人机使用。 包含用于采集和分析高光谱数据的所有硬件和软件。机载系统可与Resonon覆盖紫外线、可见光和红外线光谱范围的任何高光谱相机一起使用。价格合理、结构紧凑、坚固耐用,图像质量卓越。
发布时间:
2023
-
12
-
19
浏览次数:7
Resonon野外高光谱测量系统可与Resonon的任何高光谱成像仪一起使用,涵盖紫外线、可见光和红外线光谱范围。 价格合理、结构紧凑、坚固耐用,图像质量卓越。
发布时间:
2023
-
12
-
19
浏览次数:5
“森林”这两个字一共由5个“木”字组成,正如同大自然中无数树木相互依存,彼此交织,形成了一个庞大而有机的生态系统。森林具有调节气候、保持水源、防止土壤侵蚀等重要功能,森林是地球上最宝贵的财富之一。然而,随着人类社会的发展和气候变化加剧,森林生态系统也在发生着变化。科研人员一直在努力了解并改善这些变化,随着遥感技术的发展,新的技术手段也带来了更多地研究可能。今天推荐大家了解的是北京林业大学和北京师范大学的研究团队所做的研究。森林生态系统是最基本的陆地生态系统组成部分之一,在调节气候变化、提供物种栖息地、维持生物多样性及减缓全球变暖等方面发挥着重要的作用。随着人类活动和气候变化的加剧,生物和非生物森林干扰事件频发。因此,有效监测影响森林健康的生物和非生物因素对于理解森林生态系统碳循环及监测全球变暖的影响至关重要。其中病虫害是生物干扰事件中最主要的干扰因素之一。检测早期病虫害位置对于识别高风险林分及预防其大规模爆发和蔓延至关重要。然而,不同病虫害在垂直结构的不同位置破坏树木。了解如何监测和评估垂直冠层结构上不同病虫害的异质胁迫对于提高森林质量至关重要。传统的田间调查方法费时费力,难以在区域尺度上监测森林。近几十年来,遥感技术的出现为森林病虫害监测提供了新的途径和技术手段。随着地基、机载、星载平台等多源遥感技术的快速发展,使得高效、动态地监测不同时空尺度的森林病虫害成为可能。基于此,来自北...
发布时间:
2023
-
12
-
18
浏览次数:15
太白山,是秦岭山脉最高峰,也是青藏高原以东第一高峰,如鹤立鸡群之势冠列秦岭群峰之首,以高、寒、险、奇、富饶、神秘的特点闻名于世、称雄华中。李白的“西上太白峰,夕阳穷登攀”,“西当太白有鸟道,可以横绝峨眉巅”,形象地将太白山的雄峻高耸烘托而出。如今,更是有不少中外游客慕名前来,一览拔仙绝顶和云海奇观,领略太白峰的险峻神秘。2020年,来自中国科学院地球环境研究所的研究团队分别于5月、7月和9月登上太白山,在奇观景象之中收集土壤和植物,开启了叶片水氢氧同位素的相关研究。叶片水氢氧同位素的控制因素氢氧稳定同位素(δ2H和δ18O)常被用作示踪剂来跟踪水从降水输入运移到土壤,最终通过土壤蒸发和叶片蒸腾释放的过程。叶片水蒸腾对于调节各种尺度的水平衡至关重要。陆地植物叶片水通过气孔蒸发分馏导致重同位素富集,这在很大程度上取决于等大气条件(温度和相对湿度等)以及生物生理过程。叶片水同位素信号整合到植物有机物中,例如纤维素和叶蜡,成为研究古气候重建的新方法。然而,尽管叶片水同位素在生态水文学和有机生物合成中很重要,但人们对叶片水同位素的控制因素以及源水和水文气候在确定叶片水同位素中的作用仍然缺乏了解且叶片内同位素分馏所涉及过程的复杂性使得准确预测和测量变得困难。基于此,在本研究中,来自中国科学院地球环境研究所的研究团队于2020年5、7和9月在太白山(33.96°N,107.77...
发布时间:
2023
-
11
-
13
浏览次数:15