北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地森林为主,森林、农田和湿地的覆盖率分别为81.7%、12.0%和2.0%(图1(b))。主要植被为蒙古栎、白桦、红松和苔草,分别分布在混交林和湿地中。土壤类型包括壤土、粉质黏壤土和黏土,深度分别为0–11、11–34和34–64厘米。水东森林湿地流域(SFWC)是布尔哈通河流域的一个子流域,面积为0.98平方公里,其中森林、农田和湿地面积比例分别为93.1%、0.7%和2.2%。此外,高地森林汇聚形成一条流经下游湿地的溪流。因此,该流域为研究融化期间森林湿地内DOM运动对土壤CO2通量变化特征的影响提供了一个理想的天然实验室(图1(c))。图 1. 图们江流域地理位置(TRB,a)及BRW主要土地利用分布(b)。森林湿地流域内现场站点(▲)、土壤呼吸站点(●)、水体采样站点(▲)的空间分布及相应的场景图片(c)。上游水和下游水分别是流入湿地的上游水和流出湿地的下游水的简称。本研究使用便携式...
发布时间: 2024 - 12 - 02
浏览次数:30
在葡萄栽培与酿酒工业中,可溶性固形物总含量(Total Soluble Solids, TSS)是衡量果实成熟度和品质的关键指标。不同品种的葡萄因其遗传特性和生长环境的差异,其TSS含量存在显著变化。准确估算各品种葡萄的TSS含量,对于预测酒的品质、调整酿造工艺以及确定最佳采收时机均具有重要意义。那么,如何能够准确估算葡萄的TSS含量呢?跟随小编,一起来看看下面这篇论文给出了怎样的答案。摘要 · ABSTRACT可溶性固形物总含量(TSS)是决定葡萄最佳成熟度的关键变量之一。在这项工作中,基于漫反射光谱测量,开发了偏最小二乘(PLS)回归模型,用于估算Godello、Verdejo(白葡萄)、Mencía 和Tempranillo(红葡萄)等葡萄品种的TSS含量。为了确定TSS预测的最适合光谱范围,对四个数据集进行了回归模型的校准,其中包括以下光谱范围:400–700 nm(可见光)、701–1000 nm(近红外)、1001–2500 nm(短波红外)和400–2500 nm(全光谱范围)。我们还测试了标准正态变量变换技术。使用留一交叉验证评估了回归模型,评估指标包括均方根误差(RMSE)、决定系数(R2)、性能与偏差比(RPD)和因子数(F)。红葡萄品种的回归模型通常比白葡萄品种的模型更准确。最佳的回归模型是针对Mencía(红葡萄)得到...
发布时间: 2024 - 02 - 01
浏览次数:25
水是地球上最丰富的天然资源之一,它是所有生物体的基本需求。水在地球上循环的过程中,植物水分吸收与蒸腾演绎着重要的角色。植物通过根系吸收水分,并将水分输送到植物的各个部位。植物通过蒸腾作用释放水分到大气中,形成了大气中的水蒸气。植物水分的来源和分配是植物生长和发育过程中的重要环节,也是相关科研的重点,水同位素技术成为科研过程中十分重要的一种科研手段。今天推荐给大家的优秀文章与此相关。利用同位素技术解析植物水分来源的不确定性因为蒸腾占据了61%-65%的陆地生态系统蒸散量,植物水分吸收在全球水循环中发挥着重要作用。植物是土壤和大气水文过程的纽带,这就是实施植物恢复可以改善区域环境的原因之一。在此背景下,研究植物水源划分为如何提高植被生产力和水资源可持续管理提供重要信息。因为植物和环境条件相互作用,水分吸收是一个复杂的过程,这使得植物水源分配变得复杂。近几十年来,同位素广泛应用于植物水源划分,因为它可以标记不同水源,且激光光谱技术使其测量更容易。然而,植物水分来源解析存在很大的不确定性(如示踪剂选择、修正方法及混合模型选择)。基于此,来自西北农林科技大学的研究团队以陕西省长武黄土塬区苹果树(18和26年树龄)为研究对象,在6月至10月的生长季节,每月采集0~6 m(20 cm间隔)的土壤样品及土壤采样点周围四棵苹果树的1年生枝条(n=50),快速剥离树皮和韧皮部以避免同位素分馏。同时收集...
发布时间: 2024 - 01 - 30
浏览次数:39
当今社会,人们越来越关注气候变化和环境保护,而农业生产对这些问题有着重要的影响。GVP系统(Greenhouse Vegetable Production System)作为一种新型的蔬菜生长系统,被认为是减少化肥使用、提高农作物产量、减少温室气体排放的有效途径。那么,在GVP系统下蔬菜生长过程中产生的一氧化二氮(N2O)的排放量是怎样的呢?对环境又会造成什么影响呢?下面这篇相关论文,一起来探讨下。中国北方寿光设施蔬菜生产系统高土壤氧化亚氮排放中国的设施蔬菜生产(GVP)系统正在迅速发展,其面积已超过4百万公顷,占全球的80%以上。山东省是中国蔬菜主产区,其中寿光地区被誉为“中国设施蔬菜之乡”, GVP面积超过当地土地面积的四分之一(图1b)。为了实现产量及利润的最大化, GVP系统通常过量灌水和施肥,年灌水量约2000mm,年氮肥施用量通常在2000 kg N ha-1以上,是露天菜地的2~5倍,谷类作物的4~5倍。大量的灌水和施肥能够促进硝化和反硝化作用的发生,有利于土壤氧化亚氮(N2O)的释放。已有一些研究关注到GVP系统中N2O的排放,发现常规施肥条件下N2O的年排放量在3.9~63 kg N ha-1yr-1之间。这种差异一方面反映了GVP系统中N2O排放的空间异质性,另一方面也反映了对于频繁灌溉的GVP系统,低频率采样可能带来的不确定性。此外,先前多数研究只关注了作物的...
发布时间: 2024 - 01 - 22
浏览次数:19
水,我们生活中无处不在的重要元素。它润泽着大地,孕育着生命。然而,水的旅程并不仅仅局限于地表,它通过蒸发和降水,与大气、植被形成了紧密的互动。而这种互动的背后隐藏着一系列的谜题,需要科学家们通过不断研究来揭示。水同位素研究便是一种重要的手段,通过分析水中的同位素元素,科学家们能够了解水的来源、循环和变化。水同位素研究为科研人员提供了一种宝贵的工具,帮助他们更好地了解水、植被和气候之间的复杂关系。一起来了解一下,来自西北师范大学的研究团队,用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)做的相关研究。水资源是制约干旱区社会发展的主要自然资源,山区是内陆干旱区重要的水源涵养区,山区冰川积雪融水对干旱区淡水供应至关重要。随着气候变暖,冰川积雪融化加速,地表蒸散发增强,降水变异性加剧,气候变化将增强山区河流水文过程的复杂性。水稳定同位素是深入了解区域水文过程的有效方法,研究内陆山区径流同位素时空变化的主要控制因素,对认识内陆山区水文过程变化,合理调配干旱区水资源至关重要。基于此,在本研究中,来自西北师范大学的研究团队监测了中亚干旱区典型的内陆山区流域-西营河流域不同水体同位素数据(地表水、降水、地下水以及积雪融水)和相关水文气象数据,结合相关气象观测数据及植被覆盖指数(NDVI),评估气候和景观对内陆山区径流稳定同位素的影响。研究可以为厘清内陆山区径流稳定同位素的控制机...
发布时间: 2024 - 01 - 15
浏览次数:10
在这银装素裹的世界里,下雪不仅带来了诗意的画卷,还为大地覆盖了一层白色的绒毯,守护着生命的源泉,对土地土壤的呼吸也产生着影响。在漫长的冬季里,积雪和大地度过了一个又一个宁静的时光。积雪不仅保护了土地的水分,还防止了土地温度的剧烈变化;当春回大地,雪慢慢融化,雪水还会滋润着大地。在这些过程中,积雪下土壤中的微生物是一场狂欢还是一片沉寂呢?接下来跟随一篇优秀的文章来了解一下这些过程~积雪对有/无凋落物的温带森林土壤CO2及其δ13C值的影响永冻层和季节性积雪区域占全球陆地表面的60%左右,占全球土壤有机碳(C)储量的70%以上。积雪直接影响表土和大气之间的热交换,减少土壤温度波动的影响。在严寒条件下,较厚的积雪可防止土壤结霜,为地下微生物活动提供相对稳定的生活环境。然而,在全球气候变化背景下,北半球春季陆地积雪面积正逐年减少,预计本世纪末将减少25%。季节性积雪模式对全球气候变化具有复杂且多样的响应,可能会通过光、热、水和养分等资源再分配来影响森林生态系统的地上和地下过程。土壤呼吸作为土壤C循环的重要过程,占据森林生态系统呼吸的60%以上,气候变化导致的土壤呼吸的微小变化甚至会引起森林生态系统呼吸的重大变化。积雪和气温升高之间的相互作用影响土壤冻融循环,导致土壤性质和土壤CO2排放的变化。作者认为冬季积雪会影响不同季节土壤微生物呼吸及其δ13C值,且会随着林分和凋落物的存在而变化,然而...
发布时间: 2024 - 01 - 08
浏览次数:26
被晒化的大地,被烘懒的万物,被汗水侵蚀的燥热......在烈日高悬的夏日,谁不想听见一声冰镇西瓜裂开的清脆,让清凉香甜的瓜瓤锁住一整个夏天的炙热。作为夏日最解暑的水果,西瓜集万千宠爱于一身,也受到了霜霉病的青睐。霜霉病菌会在潮湿的环境中迅速繁殖,尤其是在温暖的夏季。这种病害会对西瓜植株造成严重的危害,从而影响果实的品质和口感。在佛罗里达州的西瓜产量受到霜霉病的严重影响后,为了有效防治西瓜霜霉病,佛罗里达大学的研究团队进行了相关研究。利用航空、地面遥感和机器学习进行西瓜霜霉病严重程度的识别和分类佛罗里达州的西瓜产量受到包括霜霉病(DM)在内的各种病害的不利影响。准确的病害识别对于实施及时有效的管理策略至关重要。遥感工具,例如无人机(UAV)和高光谱成像,已被用于作物病害检测。先前的研究已成功利用遥感和机器学习(ML)对鳄梨和番茄等其他作物进行了病害检测。但是,关于使用遥感检测西瓜病害的研究有限。这项研究的目标是利用机器学习模型和光谱植被指数(VI)来检测和分类西瓜中霜霉病的不同严重程度。在这项研究中,来自佛罗里达大学的研究团队通过Resonon Pika L室内平台系统(5个病害阶段:低、中(1和2水平)、高和非常高)及野外机载系统(2个阶段:低和高)分别测量了西瓜健康叶片和DM感染叶片的高光谱图像,选择感兴趣区域(ROI),将各种植被指数(VI)作为识别病害阶段的指标。利用多层感知...
发布时间: 2023 - 12 - 29
浏览次数:21
想象一下,你身处一片浩渺的森林中,阳光透过树叶,洒在地面上,形成一片片斑驳的光影。每一棵大树都像一座绿色的塔楼,分层堆积着生命的活力。此刻,你可能并不知道,你正在亲眼目睹一个惊人的自然现象:碳的旅程。森林是地球上最重要的碳储存器之一,在这个充满生命力的舞台上,每一片叶子、每一棵树、每一片土壤都在向我们讲述着碳的旅程的故事,积极地参与碳的储存和释放。科学家们对此也在进行着相关研究,在江西省千烟洲亚热带森林生态系统观测研究站,有这样一个研究...千烟洲亚热带森林生态系统碳同位素廓线观测系统应用案例森林生态系统固定目前大气中约三分之一的人为CO2排放;因此,准确评估森林碳汇对于更好理解全球碳收支至关重要。生态系统CO2的碳稳定同位素(δ13C)是追踪碳循环及其与大气交换的有力工具。森林生态系统CO2动态变化取决于冠层光合作用,不同组分(叶、茎、根和土壤微生物)呼吸作用及湍流混合过程的相互作用。然而,由于测量限制,大气中CO2的δ13C模式尚未确定。千烟洲亚热带森林生态系统观测研究站碳同位素廓线系统设置示意图千烟洲亚热带森林生态系统观测研究站基于Picarro G2201-i,搭建了碳同位素廓线观测系统,旨在研究森林生态系统内部及上方大气CO2及其δ13C的时间(昼夜和季节)和垂直变化,以及阐明环境和生理因素以及大气条件对其变化的影响。该系统设置了7个观测高度和3个已知浓度和同位素组分的标...
发布时间: 2023 - 12 - 27
浏览次数:12
使用 Resonon 高光谱成像仪对传送带上的物品进行分类。
发布时间: 2023 - 12 - 20
浏览次数:18
Resonon 的机载高光谱成像系统可与无人机和有人机配合使用。
发布时间: 2023 - 12 - 20
浏览次数:15
使用Resonon高光谱成像仪的分析软件 Spectronon 检测假币
发布时间: 2023 - 12 - 20
浏览次数:24
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开