北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

2100 | 干旱区戟叶鹅绒藤生长期水分吸收的稳定同位素定量示踪

日期: 2022-08-04
浏览次数: 11

2100 | 干旱区戟叶鹅绒藤生长期水分吸收的稳定同位素定量示踪

植被根系水分吸收在水分运移过程中发挥着重要作用,且在土壤-植物-大气界面具有多重影响,尤其是半干旱和干旱生态系统中。具有高生态可塑性的各种荒漠物种的根系水分吸收模式适应了有效水资源,从而产生了物种特异性抗旱机制。因此,测量根系活动和量化每个贡献者大小的定性和定量方法,特别是在(半)干旱地区,尚未得到广泛研究,并且仍然是当前研究工作的挑战。已有许多研究应用水稳定同位素方法研究了植物的吸水模式,但研究对象多集中在树木和灌木上,且许多文献提到干旱地区不可预测的降水事件对最常见的植物吸水模式的显著影响。

基于此,在本研究中,来自中国地质科学院水文地质环境地质研究所和自然资源部地下水科学与工程重点实验室的研究团队以戟叶鹅绒藤-一种常见的荒漠共生藤本植物为研究对象,采用基于水稳定同位素的多源线性混合模型识别和量化了其在生长期的水分吸收模式,同时消除了脉冲降水事件对根系吸水显著的短期影响。旨在深入了解戟叶鹅绒藤和其他荒漠藤本物种的吸水模式,从而加深对干旱区生态水文地质循环中水分运移过程的理解,并为可持续发展以及荒漠植被的管理和维护提供科学依据。

2100 | 干旱区戟叶鹅绒藤生长期水分吸收的稳定同位素定量示踪

民勤县数字高程模型和河网,青土湖的相对地理位置 (即研究区,五角星)和采样位置。

作者于2019年8月12日收集了降雨。并于2019年8月20日、2019年8月22日和2019年8月24日收集了3个不同地点的戟叶鹅绒藤茎部和不同层土壤(0-10 cm、10-30 cm、30-50 cm和50-70 cm)样品。利用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)提取土壤和植物茎中的水分。

【结果】

当降水事件的影响最小化时,0~10 cm土壤水是戟叶鹅绒藤生长阶段的主要水源,该物种对降雨的相对吸收与10~70 cm土壤水的相对吸收成正比,与0~10 cm土壤水的相对吸收成负比。戟叶鹅绒藤依靠其活性根系横向延伸,从浅层土壤中汲取水分以在极端干旱条件下生存,与其他深根植物形成的共生关系密不可分。

2100 | 干旱区戟叶鹅绒藤生长期水分吸收的稳定同位素定量示踪

降雨(浅绿色)、土壤水(蓝色)和 木质部水(红色)δ18O和δD之间的关系。

2100 | 干旱区戟叶鹅绒藤生长期水分吸收的稳定同位素定量示踪

3个地点和5个水源相对吸收箱线图(由IsoSource估计)。

2100 | 干旱区戟叶鹅绒藤生长期水分吸收的稳定同位素定量示踪

不同水源对生长期戟叶鹅绒藤的相对贡献。

【结论】

西北干旱区常见降水的最大入渗深度在50 cm左右,其周期性强作用持续5~10天。与深根系荒漠植被相比,戟叶鹅绒藤的抗旱机制涉及到利用其广泛的近地表活性根系提取浅层土壤。本文还研究了中国西北干旱地区荒漠藤本植物在生长期的吸水策略,同时消除了脉冲降水事件的显著短期影响,研究结果为深入理解土壤-植被循环中水分运移过程提供了依据。在未来的研究中,该研究结果可以与植物根系的直接证据相结合,将戟叶鹅绒藤的吸水行为与其共生物种结合起来,以揭示其相互作用机制以及水分利用模式。此外,人工同位素标记技术在生态水文过程的应用也具有一定的研究潜力。

点击下方链接,阅读原文:

https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650313105&idx=2&sn=f22d2bc5c31493ef99af155100667730&chksm=bee1bd6e8996347882c8424b87257a2c2b6ee74ba083972a5c47c4910145c765eea39484284e&token=2031202150&lang=zh_CN#rd

News / 相关新闻 More
2024 - 06 - 11
摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,...
2024 - 05 - 20
北京,这座拥有千年历史的城市,见证了无数历史的变迁和现代文明的飞跃。然而,随之而来的是空气质量问题,尤其是由机动车尾气排放引发的大气污染。据相关研究显示,机动车尾气中含有大量的有害物质,包括一氧化碳、氮氧化物、挥发性有机化合物以及细颗粒物等,这些污染物不仅对人体健康构成威胁,还会导致城市雾霾的形成,影响城市的视觉美感和居民的生活质量。在众多污染物中,氨气作为一种典型的碱性气体,其来源多样,包括农业活动、工业生产、生活垃圾处理等。在北京市城区车辆排放是否是氨气的主要来源?据此,来自中国科学院大气物理研究所的研究团队进行了相关研究。北京城区NH3排放源-机动车尾气背景介绍氨气是大气中重要的碱性气体,在中和酸性气体,形成二次气溶胶方面发挥着重要作用。NH3在大气中滞留时间短,因此NH3浓度日变化显著。一般特征为在早上大约07:00~10:00,NH3浓度到达峰值。然而以前的研究局限于单一季节,无...
2024 - 05 - 17
菱透浮萍绿锦池,夏莺千啭弄蔷薇透过浮萍,诗人的眼里看到的是其和水中菱叶相映成趣的景象,是夏日池塘的勃勃生机。而在科研学者的眼中,看到的是天南星目浮萍科的水生植物,是潜藏在水稻种植中的双刃剑。营养物质的争夺?自然光照的遮挡?生存空间的占据?在一片生机之下,浮萍和水稻之间塑造着另一番景象..由于气候变暖/或灌溉水富营养化的影响,稻田中的浮萍(DGP)大幅增加。本研究考虑到生态因素、光合能力、光谱变化和植物生长等因素,对三个代表性水稻品种进行了田间试验,以确定DGP对水稻产量的影响。结果表明,DGP显著降低pH值0.6,日水温降低0.6℃,水稻抽穗期提前1.6天,并平均增加了叶片的SPAD和光合速率分别为10.8%和14.4%。DGP还显着提高了RARSc、MTCI、GCI、NDVI705、CI、CIrededge、mND705、SR705、GM等多种植被指数的数值,并且水稻冠层反射光谱的一阶导...
2024 - 05 - 08
在城市污水处理与农村生活废弃物管理中,化粪池作为一种常见的粪便处理设施,承担着重要角色。然而,化粪池在分解过程中会产生包括氨气在内的恶臭气体,这些气体不仅对周围环境造成异味污染,还可能对人体健康构成威胁。以下论文中,来自上海市环境科学研究院的研究团进行了化粪池的相关研究,以降低化粪池氨气排放对环境的负面影响,促进生态平衡和可持续发展,为相关领域的政策制定和技术改进提供理论依据和实践指导。中国城市潜在NH3排放源-化粪池背景介绍在中国高度污染的城市大气中,大气新粒子形成可能是由于硫酸和胺的成核机制,而目前尚不清楚为什么中国的城市大气中富含胺。在城市中,尽管抽水马桶的普及率接近100%,但人类排泄物大多储存在建筑物下面的化粪池中,而不是直接运往污水处理厂。化粪池中大量NH3是微生物分解的产物,可以通过连接屋顶的塑料管释放到大气中。鉴于胺与氨是共同排放的,有理由认为人类排泄物也可能是中国城市中胺...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开