北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

土壤呼吸 | 增雪削弱了植物和微生物氮利用的季节耦合关系并导致生态系统氮流失

日期: 2022-08-01
浏览次数: 21

土壤呼吸 | 增雪削弱了植物和微生物氮利用的季节耦合关系并导致生态系统氮流失

植物和微生物生长繁殖均需要氮。尽管这通常导致两者对氮的竞争,但在数百万年的共同进化中,植物和微生物已发展成了互利共生的相互关系。微生物固定和植物吸收之间的时间耦合在氮循环维持中起着关键作用。植物和微生物生物量的不同季节动态很大程度上决定了不同生态系统组分间的氮流动。值得注意的是,冬季微生物氮固定可能直接影响生长季植物氮供应。气候变化极大地改变了全球降雪格局,进而改变土壤温度、土壤水分和冻融频率,这不仅会影响覆雪期氮循环,还会影响冻融期氮流失。最终,在冬季气候变化下,植物和微生物之间氮交换的时间耦合可能会重塑。然而,目前尚不清楚积雪深度的变化是否会影响植物和微生物氮利用之间的时间联系以及如何影响。

在过去的40年,北极涛动和大气环流的变化增加了中国东北地区冬季积雪深度。为了探索冬季气候变化下植物和微生物氮循环之间季节内和季节间相互作用如何影响生态系统氮固持,中科院植物所刘玲莉研究团队在中国科学院内蒙古草原生态系统定位研究站(IMGERS,43°38′N,116°42′E;1200 m a.s.l.)依托长期降雪控制实验平台,结合15N示踪试验以及N2O高通量监测手段,旨在检验以下假设:1)微生物在冬季有较强的氮获取能力,而植物则在生长季表现出更高的氮竞争能力;2)生长季植物氮吸收与非生长季土壤微生物氮固定量呈正相关,以及3)冻融阶段增雪通过增加气态氮排放和淋溶流失来降低生态系统氮固持量。

作者于2018年1月23日和2019年1月28日测量了每个地块的冬季积雪深度。每小时记录了每个地块10 cm深度的土壤温度。于2017年11月1日至2019年1月28日,每隔30 min测量10 cm土壤深度的土壤含水量。15N标记实验之前,采集土壤(0-20 cm)、根系、凋落物和地上植物,并测量其15N自然丰度。15N标记实验之后,于2018年1月、3月、5月、8月和2019年1月进行五次采样。在非生长季节,采集所有凋落物。在生长季节,采集地上植物生物量、凋落物和土壤样品。并分析每个新鲜土壤样品的微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物15N/14N比率。利用SF-3000-8多通道土壤温室气体通量自动测量系统(北京理加联合科技有限公司)+SC-22自动测量室(北京理加联合科技有限公司)于2018年4月16日至2019年12月31日测量N2O排放。

土壤呼吸 | 增雪削弱了植物和微生物氮利用的季节耦合关系并导致生态系统氮流失

图1 季节性覆雪生态系统中植物、微生物和 溶解无机氮(DIN)库的年度氮动态示意图

【结果】

微生物15N回收率在冬季达到峰值,占生态系统15N总回收率的22%,然后在冻融期迅速下降。增雪加剧冻融期N2O排放以及氮淋溶损失,使生态系统15N总回收率减少了42%。随着生长季节推进,微生物生物量释放的15N被植物吸收,植物表现出更高的氮竞争优势。植物15N回收率在8月达到峰值,占生态系统15N总回收率的17%。格兰杰因果关系检验表明,环境雪处理下微生物15N回收率可以预测植物15N回收率的时间动态,增雪处理下则不能。此外,8月份植物15N回收率与3月份微生物15N的回收率呈正相关,并最好地解释了这一点。3月增雪,较低的微生物15N回收率使8月植物15N回收率降低了73%。总之,该研究结果提供了植物和微生物间氮获取能力季节性差异的直接证据,这有利于生态系统氮固持,然而,增雪削弱了植物-微生物间氮循环的季节耦合关系。

土壤呼吸 | 增雪削弱了植物和微生物氮利用的季节耦合关系并导致生态系统氮流失

图2 2018.11.1至2019.1.31环境和增雪处理下的日平均N2O-N排放量(a)和累积N2O-N排放量(b)

【结论】

增雪加剧非生长季(覆雪期和冻融期)N2O排放以及氮淋溶损失,降低微生物氮固持,从而减少生长季植物的氮供应,加剧植物和微生物间的氮竞争,导致生长季植物氮获取能力下降。进一步分析发现,冻融阶段微生物氮固量是生长季中期植被氮获取能力的主要调控因素,冻融阶段微生物氮固定量越高,生长季植物氮获取量越高。研究表明,在季节性覆雪生态系统中,生长季植物的氮供应依赖于冬季微生物的氮固持量,而冬季增雪加剧了冻融阶段氮流失,从而削弱了植物-微生物间氮循环的季节耦合关系。这些发现表明,降雪模式的变化可能会显著改变未来气候变化下生态系统氮循环和氮基温室气体排放。作者强调了在评估全球变化下的氮循环时,生物地球化学模型更好反映冬季过程及其对冬季气候变化响应的重要性。

点击下方链接,阅读全文:

https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650313105&idx=3&sn=c65ffd94f8ea171c784aca9a3a4292b3&chksm=bee1bd6e89963478a7b6a28ceda0f7e331a9af9360b56707440f7263121348fdc4c349f81f81&token=2031202150&lang=zh_CN#rd


News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开