北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度

日期: 2022-04-25
浏览次数: 44


Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度

姜黄素是一种天然化合物,具有良好的抗炎、降血脂、抗氧化和抗癌等特性。姜黄素是从姜科、天南星科中一些植物的根茎中提取的一种二酮类化合物。其中,姜黄中约含姜黄素3%~6%,是植物界很稀少的具有二酮结构的色素。了解栽培根茎中姜黄素的水平并确定高产品种非常重要。传统上测量姜黄素是通过从新鲜根茎或干粉中将其提取出来,并使用高效液相色谱(HPLC)或紫外-可见分光光度法进行分析。从植物材料中分离姜黄素费事、费力、成本高,且需要专门的实验室设备和有经验的操作人员。而高光谱成像(HSI)是一种快速且无损的技术,已成功用于土壤和农产品(坚果、水果和蔬菜)各种化学成分和质量指标的评估。然而,目前尚未探索使用新鲜姜黄根茎的HIS图像来预测姜黄素。

基于此,为了填补研究空白,在本文中,来自澳大利亚的一组研究团队进行了相关研究,旨在(1) 比较澳大利亚东部不同采样点3个姜黄品种(黄色、橙色和红色)的总姜黄素浓度和不同类姜黄素的分布;(2)评估利用可见-近红外(Vis/NIR)光谱(400-1000 nm)建立的PLSR模型预测新鲜姜黄根茎中总姜黄素浓度的潜力。

作者在2018年11月至2019年11月,从五个研究地点共收集了190个样本,以捕捉生长周期的变化。利用光谱范围为400-1000 nm,光谱采样间隔为1.3 nm,光谱分辨率为2.3 nm的Resonon Pika XC2高光谱相机获取样品的高光谱图像。扫描后,提取根茎中的姜黄素,分析其总浓度和分布。建立偏最小二乘回归(PLSR)模型来预测总姜黄素浓度,并通过R2和RMSE来评估模型的准确度。
 

Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度

图1 高光谱成像系统Resonon Pika XC2高光谱相机扫描姜黄根茎(a),选择根茎肉(横截面)(b)和皮(c)感兴趣区域(ROI),用于提取每个样品的平均光谱反射率。 


Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度

图2 实验设计和模型开发流程图。



【结果】

表1 校准和测试集中不同品种和采样地的总姜黄素 (%) 浓度的描述性分析。

Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度


Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度

 
图3 不同姜黄品种中三种姜黄素类化合物:双去甲氧基姜黄素 (a)、去甲氧基姜黄素 (b) 和姜黄素 (c) 的百分比分布。
Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度 
图4 使用三个姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)。


表2 使用各种光谱分析技术的PLSR模型预测性能。

Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度

图5 仅使用橙色姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)。


 【结论】
红色姜黄品种姜黄素最高,建议农民可以培育该品种。本研究结果表明Vis/NIR高光谱成像结合PLSR有潜力仅使用根茎肉图像而不是根茎皮图像预测新鲜姜黄中的姜黄素。在收获和清洗过程中,指状根茎通常从母根茎中折断,仍可销售,因此,通过扫描从加工批次中随机选择的任何折断的根茎碎片,并使用所开发的PLSR模型,可以在两级系统下基于农场手段对包装根茎进行分级。针对每个品种开发模型可以提高预测性能和可靠性。使用单一姜黄品种(橙色)开发的模型预测结果更准确,预测性能和可靠性更高。波长选择(Jack knifing)进一步改进了这些方法,使其适用于更小、更便携的多光谱成像系统。然而,在未来的研究中,应针对每个特定品种采集更大的样本量,并对从其他光谱区域收集的数据进行调查。此外,该方法应被用于预测单个姜黄素类化合物,未来新兴的图像深度学习算法可能会进一步提高模型预测性能。

请点击如下链接,阅读原文:
https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310032&idx=1&sn=18f01ae402460e5da378f1ca6611014e&chksm=bee1a96f8996207988d67e735544aa15e26988c1a3cbb97e8aef9859a4a796e09c2f2202826e&token=473735764&lang=zh_CN#rd

News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开