北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量

日期: 2022-04-21
浏览次数: 53


ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量

土壤水分是直接影响蒸发、入渗和径流等多种环境过程的重要因素。而且,土壤水分在农业蒸散与粮食安全、湿地退化、干旱、陆气界面的能量交换等相关研究领域发挥着重要的作用。

地面测量能够提供易于校准和长时间连续获取的数据,但该种方法仅针对单个小区域,难以支持空间变化研究或实地研究。基于水和土壤介电特性的巨大差异,微波遥感被广泛应用于大空间尺度的土壤水分监测,但不适用于精准农业等多种研究。热遥感可以根据地表温度来估算土壤水分,但热遥感信号不单受到土壤含水量(SMC)的影响,湿度、风速、大气条件等其他参数也会影响估计结果。而光学遥感由于其精细的空间分辨率和利用诸如MODISLandsat系列和Sentinel任务等卫星数据进行大尺度监测潜力之间的平衡而引起了诸多关注。目前已经提出了许多指标和模型来阐明反射率特征随SMC的变化,并利用实验室、实地、机载和卫星数据从窄带和宽带的反射率来估计SMC。这些方法/指标主要针对从饱和到风干的各级SMC;然而,作者发现饱和到风干的单一关系映射会导致准确估计的错误印象。在整个干燥过程中,光谱反射率特征和SMCs之间的回归关系不一致导致对相对较低的SMCs估计的精度较低。

基于此,在本研究中, 来自南京大学、康奈尔大学和河南农业大学的研究团队提出了一种分割方法以更准确的估计SWC。作者监测了代表不同土壤特性的三种土壤样品的整个干燥过程,并通过蒸发速率变化确定其过渡点(如高SWC的阶段1干燥和低SWC的阶段2干燥)。建立了SMC估计指数,即短波归一化指数(SNI),基于辐射传输模型支持干燥过程中的SNI指数趋势。

 

ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量

1 实验装置示意图。利用ASD Fieldspec®Pro光谱仪进行光谱辐射亮度采集。

【结果】

ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量

2 a) 三种土壤样品蒸发速率变化与干燥时间的关系,b) 干燥过程中三种土壤在2150 nm处的反射率变化。 

c) 三种样品蒸发速率导数的最大值确定干燥阶段分割点。

 

ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量

3 三种样品砂/土壤含水量与光谱反射率之间的线性和对数回归的R2a) 石英砂,b) 圬工砂,c) 伊萨卡土壤,d) 模拟大气透射率。在 a)b) c) 中,黑色虚线标记为1680 nm2150 nm

ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量

4 a) 显示了SMC估计的验证结果。 b)c) d) 显示了三种样品

的建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。

ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量

5 aSMC估计值和测量值关系图,其中SMC估计值使用SNI2在线性回归中计算,Bwater 1980 nm处评估。 b)c) d) 显示了三种样品的建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。

【结论】

利用单一回归关系和单一指数估计整个干燥过程的SMC对所有土壤类型并不是有效的。该研究证明了利用现有方法估计SMC结果不准确,以及在分割干燥过程中估计SMC的基本原理。监测整个干燥过程中3种不同土壤样品的光谱反射率和重量,将其分为两个阶段用于训练和验证。此外,基于辐射传输模型研究不同干燥阶段所提出指数和光通过水的路径长度之间的关系,并支持了经验方法建立的回归关系,尤其是对路径长度相对较短的土壤。结果表明,在分割思想下,SMC估计值和测量值之间的相关性明显提高,尤其是在SMC较低的情况下(阶段2干燥过程)。

蒸发速率变化决定了干燥过程的分割过渡点,所有的土壤类型并不是一个特定的SMC值;因此,理解蒸发和SMC变化导致的光谱反射率变化之间的关系是极其重要的。例如,在实际使用中,石英砂阶段2干燥可以忽略,但它却是伊萨卡土壤干燥的重要组成部分。

SN1/SN2指数结合可以有效估计三种样品的SMC。对于阶段1干燥,利用SNI1指数在1680 nm2150 nm处的反射率预测SMC是有效的。在阶段2干燥中,尽管使用1930-2150 nm组合的SNI2指数实现了最佳相关性,但作者认为1980 nm1930 nm更适合实地应用。这种波段选择是为了避免强烈的大气水汽吸收,以确保足够的地面反射辐射到达飞机或卫星传感器。相对于将阶段2干燥视为阶段1干燥延续的指标,相关关系显著改善。

作者得到了如下结论:

1.干燥过程分割对从光谱反射率数据准确估计SMC是很有必要的,尤其是对于具有较长阶段2干燥过程的土壤。例如本研究中的伊萨卡土壤。对于与伊萨卡土壤相似的土壤,基于整个干燥过程的SMC估计可能会导致阶段1或阶段2干燥的偏差,这取决于哪个阶段有更多的训练集。

2. 由于石英砂中光通过水的路径长度相对较长,因此当SMC较高时,SNI具有独特的特征。在圬工砂或伊萨卡土壤中,half-logistic型的SNI曲线不同于线性关系。当光程较长时,拟合关系应由线性回归变为对数回归。

3. 在阶段2干燥过程中,利用现有卫星系统常用的光谱波段组合难以准确估计SMC;使用高光谱数据可以获得更高的精度,可以提供近强水吸收波段的数据,如1930 nm。虽然由于大气水汽的吸收,1930 nm不能在实验室外有效地使用,但稍微偏离中心的波长(1980 nm)仍然比水吸收波段范围外的波长表现更好。

News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开