北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

基于ENVI二次开发的Resonon高光谱图像拼接与几何校正评估

日期: 2020-07-09
浏览次数: 553

摘要

针对推扫式成像光谱仪获取的狭带影像需要经过几何校正才能拼接形成空间二维影像的问题,提出了基于ENVI二次开发的高光谱推扫图像拼接技术。基于单应映射建立光谱仪倾斜状态下与正射状态下图像上的二维点之间的关系,校正由姿态变化引起的图像畸变结合GPS数据修正因飞行速度变化引起的狭带重叠将校正后的狭带影像拼接起来。在ENVI二次开发平台上进行技术集成,实现了Resonon推扫高光谱狭带影像的自动校正拼接。对河北保定郊区高光谱影像的校正拼接实验证明,该方法与光谱仪自带拼接软件校正结果接近经纬度坐标差均在1m以内,均方根误差约为0.7389能够满足一般高光谱遥感应用中的地理精度要求。


研究目的:

根据单应映射原理,建立光谱仪倾斜和正射状态下像点的映射关系,利用GPS/INS组合导航数据校正狭带影像中的畸变,拼接成一幅完整的影像,并在ENVI二次开发平台上实现推扫狭带影像的自动校正和拼接。


推扫成像畸变原因:

推扫式成像是利用飞行平台的向前运动,借助于与飞行方向垂直的扫描线记录而构成二维图像。推扫型成像光谱仪通常采用一个垂直于运动方向的面阵CCD来感应地面响应在飞行平台向前运动中完成二维空间扫描,平行于平台运动方向通过光栅和棱镜分光完成光谱维扫描,因此,CCD上一个点对应一个谱段,一条线对应一个谱面。CCD探测器每次成像是空间一条线上的光谱信息。为了获得空间二维图像,再通过机械推扫,完成整个平面的图像和光谱数据采集。

推扫成像时,CCD探测器所记录的高光谱图像数据是沿着飞行方向的条幅,由于搭载光谱仪的飞行平台在飞行过程中,不能一直保证理想的姿态正射获取影像,速度和姿态的不稳定导致飞行平台的位置、航偏角、俯仰角和横滚角不断随机变化,引起光谱仪拍摄时外方位元素也不断随机变化。因此,CCD曝光时每条扫描线对应的光谱仪外方位元素不一致引起了图像的几何畸变:

1. 飞行平台姿态不稳定造成地面扫描行之间相互交错,图像扭曲变形,影响后期地物目标的解析和判别。

2. 飞行平台速度不稳定易造成扫描行之间的行间距忽大忽小,出现重叠或间隙,为了获得地面的完整影像,通常推扫成像需保证一定的采样率。因此,在图像拼接时就需要借助GPS位置信息对重叠的扫描行进行几何纠正和图像融合处理。


IDL实现

IDL是美国ITT VIS公司推出的第四代交互式、跨平台、面向矩阵处理的编程语言,具有快速的数据分析、图像处理和强大的可视化功能。采用IDL语言调用ENVI平台中的图像处理函数,可以很方便地进行二次开发,实现遥感数据的快速分析和可视化。

推扫图像的自动拼接主要包括如下3个基本步骤:

(1)影像和GPS/INS数据读取:遥感影像数据包含图像本身和头文件,ENVI二次开发提供了函数读取遥感影像及其属性。如ENVI_OPEN_FILE、ENVI_FILE_QUERY、ENVI_GET_ SLICE等。GPS/INS数据存储于文本文件中,按照文本文件读取方式即可获得狭带影像获取时光谱仪的姿态和位置信息。

(2)单应矩阵计算和单应映射:以北东地坐标系为地理坐标系,依据公式计算得到单应矩阵H。主要代码命令如下:

H=M_inv#MATRIX_POWER(C, -1)#M;计算单应矩阵.

所以,对于狭带影像上的每一个二维点 ( x,y ) ,都可以获得校正后的对应点 (x,y ) ,点 ( x,y ) 的灰度值即为点 ( x,y ) 的灰度值。

(3)图像拼接:校正后的每条狭带图像中心点的二维地理坐标即光谱仪成像中心的GPS 二维坐标,根据光谱仪的成像地面分辨率,选定影像投影方式,可以为每条狭带设置地理信息。主要代码命令如下:

map_info=ENVI_MAP_INFO_CREATE( /geographic, mc=mc, ps=ps ); 为狭带添加地理信息。

拼接后的影像被认为是光谱仪理想姿态下获取的正射影像,具有与GPS获取的一致的位置信息,拼接影像点的高光谱曲线与原始扫描行对应点的一致,能够真实地反映地面的空间特征和光谱特征。


实验结果与分析:

本文选择河北省保定市郊区的高光谱影像进行校正拼接实验,影像由搭载于无人机的PikaL 高光谱成像仪拍摄获取,PikaL高光谱成像仪由美国Resonon公司设计生产,光谱范围为400-1000nm,光谱分辨率为2.1 nmCCD扫描行宽度为900像素。飞行过程中同时搭载惯导系统实时获取光谱仪的姿态位置信息。高光谱仪将推扫获取的原始狭带影像先简单拼接起来存储于固态硬盘中,此时的地理信息并未经过纠正图像存在几何畸变图a所示为原始图像的假彩色图像狭带经过几何校正和拼接后才能正确显示地面目标的特征,如图b所示

基于ENVI二次开发的Resonon高光谱图像拼接与几何校正评估

为了能够定量检验该几何校正方法的效果同时采用Pika L高光谱成像仪自带的软件对原始影像进行几何校正将两种方法得到的校正影像进行比较。两种校正方法均采用UTM 投影WGS-84为基准面。首先在软件校正影像中随机选取10个均匀分布的明显地物点读取其坐标值,作为采样点用于评定校正精度,然后从本文方法校正后影像中读取其相应坐标值经过对10个采样点残差的计算得到如表1所示的精度检验结果。

基于ENVI二次开发的Resonon高光谱图像拼接与几何校正评估

表1:北向距离均方根误差为0.6327m,东向距离均方根误差为0.3817m,

总均方根误差为0.7389

由表1可以看出,采样点在x和y方向上的坐标偏移均不超过1m,两种方法得到的校正图像地理信息较为接近;y方向坐标均方根误差大于x方向坐标均方根误差,即像点坐标的经度值准确性高于纬度值。对于某些地理精度要求不高的航空高光谱遥感应用来说,本方法取得的校正效果已满足需求。如果需要进一步提高精度,可以通过增加地面控制点或与高精度地图进行图像配准实现几何精校正。


结语

本文根据推扫成像和单应映射原理,结合GPS/INS组合导航系统实时获取光谱仪姿态角度和位置信息。在ENVI二次开发平台上,采用IDL语言实现了高光谱仪推扫狭带影像的自动校正和拼接。验证实验表明,本方法与自带软件校正拼接效果接近,均方根误差基本满足一般的高光谱遥感应用。虽然本文方法能够取得较为理想的校正拼接效果,但是单扫描行的校正过程耗时较长,无法实时获取校正影像,下一步将就提高校正拼接效率展开更加深入的研究。另外,拼接过程中不同成像条件下的匀色处理同样是后续需要研究的内容。


原文下载连接:

基于ENVI二次开发的高光谱图像拼接与几何校正评估


News / 相关新闻 More
2025 - 03 - 06
研究背景水分是限制植物生长的关键因素,特别是在全球气候变化的背景下,干旱半干旱地区的生态水文过程和植被水分利用策略受到显著影响。煤矿开采,尤其是露天矿,对环境破坏严重。黑岱沟露天煤矿位于黄土高原生态脆弱区,矿区的生态修复已成为重点工作。排土场的植被恢复对于合理利用水土资源和促进煤矿可持续发展至关重要。目前,矿区生态修复中的水问题研究主要集中在土壤水文效应、物理性质和坡面侵蚀等方面,但对植物水源及其利用机制的定量研究较少。利用稳定同位素技术,可以高效分析植物的水源,并通过多源混合模型量化各水源的贡献率。例如,深根植物通常利用深层土壤水,而浅根植物则更多依赖浅层水分。由于煤矿开采扰动了土壤结构,植物的水源利用方式与自然状态下有所不同。此外,雨季的不同月份中,植物水源及其利用机制也存在差异。  因此,本研究以黑岱沟露天矿排土场为例,分析蒙古松、柠条和紫花苜蓿在雨季的水分来源及...
2025 - 03 - 06
点击蓝字,关注我们健康的水环境对可持续的城市发展至关重要。然而,随着城市化的快速推进和人口增长,工业废水和生活污水造成了严重的水污染,危及人类健康和水生生态系统。传统的水质监测方法成本高昂且劳动密集。近年来,MODIS、Landsat 和 Sentinel 等卫星图像技术取得了进展,提供了广泛且具成本效益的监测手段,但由于空间和光谱分辨率的限制,在监测总磷 (TP) 和化学需氧量 (CODMn) 等非光学活性参数时仍面临挑战。机载高光谱成像仪通过提供高分辨率图像,弥补了卫星与地面监测之间的不足,成为一种有效的解决方案。无人机获取的高光谱图像能够捕捉到详细的光谱数据,从而改善非光学活性水质参数的反演。尽管具备优势,但仍面临诸如水质样本有限和光谱特征复杂等挑战。有效的光谱预处理和特征选择对于提高高光谱图像水质反演的准确性和效率至关重要。分数阶导数 (FOD) 和离散小波变换 (DWT) 等技术...
2024 - 12 - 02
森林约占全球土壤碳库的70%,是调节大气CO2浓度的关键因素。湿地作为陆地和水生系统的过渡区,通常地下水位接近地表。全球变暖导致北方低地森林被湿地取代,造成景观破碎化,并可能改变碳通量。土壤CO2通量占大气碳的20-38%,其主要来源是土壤呼吸,包括自养和异养呼吸。异养呼吸受温度、湿度和溶解有机物(DOM)影响。低分子量化合物(LMW)更易降解,促进微生物活动和土壤呼吸。解冻期雨雪事件可将DOM输送至湿地,影响土壤CO2通量。本研究假设,解冻期森林湿地集水区的土壤CO2通量受DOM运动的影响,目标是分析CO2通量变化,确定DOM的影响, 并探索微生物在其中的作用。图们江位于中国、朝鲜和俄罗斯的交界处,最终流入日本海,地处中高纬度地区,范围为北纬41.99°到44.51°(图1(a))。布尔哈通河是图们江的重要支流,其上游流域面积为1560平方公里。该流域以山地...
2024 - 11 - 07
对地表入渗和蒸发通量的分配,以及准确量化不同空间尺度下土壤与大气之间的质量和能量交换过程,都需要了解土壤的水文性质(如土壤水分特征曲线和导水率特征曲线)。土壤水分特征曲线(SWRC)描述了在基质势下土壤水分含量的平衡情况,是重要的水文特性,与土壤孔隙的大小分布和结构密切相关,受土壤结构、质地、有机物和粘土矿物等因素的影响。传统测量SWRC的实验室方法繁琐,数据往往不完整,且只覆盖有限的水分含量范围。近年来,近程和遥感技术得到了广泛关注,特别是在光学域内的土壤反射光谱已被用于获取土壤矿物学和化学成分、有机物含量、粒度分布及水分含量等信息。这些研究为卫星遥感提供了大尺度测绘的基础。传统方法主要依赖光谱转移函数,尽管能有效推断土壤水力特性,但需大量数据进行模型校准。本文提出了一种新的实验室方法,通过水分含量依赖的短波红外(SWIR)土壤反射光谱直接估计SWRC,利用最近开发的前向辐射传输模型,仅...
关闭窗口】【打印
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910124070

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开