北京理加联合科技有限公司

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Technical
News 应用支持
摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,RPD为1.68。迁移后模型的预测精度、R2值、RMSE和RPD分别为0.72、6.71 g/kg和1.53。与模型直接迁移预测相比,采用基于四阶多项式和XG-Boost的土壤光谱校正模型,SOM预测结果的RMSE分别降低了57.90%和60.27%。 这种性能比较凸显了在区域尺度 SOM 预测中考虑土壤物理特性的优势。Figure 1. Framework of the proposed SOM estimation model.研究区域试验点1位于中国东北黑龙江省黑土耕地保护区,如图2所示,面积为1095 km2。该地区属温带大陆性季风气候,年降水量为450–650 mm,降水主要集中在6–9月,占全年降水量的80%。研究区地势南高北低,西高东低,大部分地区为堆积平原。该研究区是全球仅有的四个黑土区之一,耕层深厚,土壤肥沃,含腐殖质的土层厚度为25–80 cm,适合种植玉米、大豆等作物...
发布时间: 2024 - 06 - 11
浏览次数:8
ASD 地物光谱仪FieldSpec 4 技术文献:不同干旱条件下,夏玉米全生育期冠层吸收光合有效辐射比的高光谱遥感反演 冠层吸收光合有效辐射比(fAPAR)是植被生产力遥感模型的重要参数,但关于不同干旱条件下作物全生育期的fAPAR遥感反演研究仍未见报道。本研究利用2015年夏玉米5个灌水处理模拟试验的高光谱反射率和fAPAR观测资料,分析了不同干旱条件下夏玉米关键生育期fAPAR和高光谱反射率变化特征,探讨了fAPAR与反射率、一阶导数光谱反射率和植被指数的关系。 轻度水分胁迫和充分供水条件下,fAPAR较高;重度水分胁迫和重度持续干旱条件下,fAPAR较低。冠层可见光、近红外光和短波红外光区的反射率与fAPAR分别呈负相关、正相关和负相关关系。fAPAR与可见光和短波红外光区的383、680和1980 nm附近的反射率的相关性最强,相关系数均达-0.87。一阶导数光谱反射率与fAPAR相关性强且稳定的波段为580、720和1546 nm,相关系数分别为-0.91、0.89和0.88。9个常用植被指数与fAPAR呈线性或对数关系,其中,增强型植被指数、复归一化植被指数、土壤调节植被指数和修正的土壤调节植被指数与fAPAR的关系模型最好,决定系数(R2)均在0.88以上,平均相对误差分别为16.6%、16.6%、16.7%和16.2%;基于一阶导数光谱反射率与...
发布时间: 2020 - 02 - 07
浏览次数:116
M.K. Maid1*, R.R. Deshmukh21*Department of CS and IT, Dr. B. A. M. U, Aurangabad, India2Department of CS and IT, Dr. B. A. M. U, Aurangabad, India*Corresponding Author: mm915monali@gmail.com Available online at: www.ijcseonline.org Abstract— Remote Sensing has wide range of applications in many different fields. Remote Sensing has been found to be a valuable tool in evaluation, monitoring, and management of land, water and crop resources. The applications of remote sensing techniques in the field of agriculture are wide and varied ranging from crop identification, detection of diseas...
发布时间: 2019 - 03 - 19
浏览次数:256
本文旨在利用高光谱数据建立一个准确、可解释的植物病害识别模型。由真菌引起的大豆炭腐病是一种严重影响大豆产量的世界性病害。在383-1032 nm范围内,Resonon高光谱成像仪在240个不同的波长处捕获高光谱图像。针对大豆炭腐病,科学家建立了3D卷积分网络模型,模型分类精度为95.73%,并利用可视化显著图检验训练模型、敏感像素位置以及分类的特征敏感波段,发现:敏感特征波段为733 nm,这和常用的鉴别植物健康程度的特征波段范围(700-1000nm)是一致的。 实验:感染炭腐病的大豆:分别在第3、6、9、12和15天采集健康的和受感染的大豆茎秆样品,在测量病害程度之前,实时采集健康的和收到感染的茎秆的高光谱图像。测量仪器:美国Resonon高光谱成像仪,型号:Pika XC(包含安装支架、移动平台、操作软件和2个70w卤素灯)Pika XC性能:光谱通道数:240,波段范围,400-1000 nm,分辨率:2.5 nm。 平台系统如下图(a)所示:(a)    室内高光谱成像系统(b)    不同光谱波段的大豆茎秆样品高光谱图像(c)     大豆茎秆的内部和外部RGB图像的病害程度比较3D-CNN模型由两个连接的卷积分模型组成,其中,一个小的构架用于防止训练...
发布时间: 2018 - 10 - 09
浏览次数:681
DOI: 10.5846/stxb201803300694韩东,王浩舟,郑邦友,王锋. 基于无人机和决策树算法的榆树疏林草原植被类型划分和覆盖度生长季动态估计. 生态学报, 2018, 38(18):6655-6663 基于无人机和决策树算法的榆树疏林草原植被类型划分和覆盖度生长季动态估计 韩东1,王浩舟1,2,郑邦友3,王锋1,*1  中国林业科学院荒漠化研究所,北京   1000912  The Faculty of Forestry & Environmental Management, University of New Brunswick, Fredericton, NB E3B 5A3, Canada3  CSIRO Agriculture and Food, Queensland Biosciences Precinct 306 Carmody Road, St Lucia, 4067, QLD, Australia摘要:植被覆盖度是评估生态环境质量与植被生长的重要指标,也是全球众多陆面过程模型和生态系统模型中表达植被动态的重要参数。卫星遥感和地面测量是估算植被覆盖度的常见方法。然而,如何精确...
发布时间: 2018 - 09 - 29
浏览次数:162
摘要:本文介绍了一种新的采样和测量方法,该方法使用无人航空系统(UAS)记录的二氧化碳浓度和风力数据的代用测量结果来推断甲烷通量。这里描述和试验的通量法适用于垃圾填埋场和类似温室气体排放热点的空间尺度,使其成为一种低成本和快速案例研究量化目前尚不能确定(但非常重要)温室气体通量的重要新方法源。我们提供了一个研究案例,利用这些基于UAS的测量结果,从英格兰北部的试验填埋场获得瞬时甲烷通量,采用为UAS采样定制的质量平衡模型,并将CO 2浓度联合排放作为甲烷排放代用品。在2014年11月27日和2015年3月5日进行的两次试验中,甲烷通量(和通量不确定性)分别为0.140 kg s-1(1σ时为±61%)和0.050 kg s-1(1σ时为±54%)。背景(流入)浓度( 40%)和风速( 10%)的环境变化主导了流量的不确定性;而仪器所导致的误差率仅为1-2%。所描述的方法代表了关于温室气体热点通量计算这一具有挑战性的问题的重要进展,并且提供了对各种类似环境的可再现性。这种新的测量解决方案可以增加一套方法来更好地验证特定源温室气体排放清单 - 这是“联合国气候变化框架公约”COP21(巴黎)气候变化协议的一项重要新要求。阅读原文请点击下方链接cdca8bc3618723d5efe56119fc8d3c9a.pdf (2.98 ...
发布时间: 2018 - 03 - 23
浏览次数:68
双标水(DLW)法是50年前开发的一种测量动物自由生活能量消耗的测量方法。利用这种技术,水分子中的氢原子和氧原子都被它们的稳定同位素部分或完全地以示踪为目的替换。当人体摄入定量的双标水(2H218O)后,这两种同位素与身体总水量平衡,而后被身体以不同形式消耗掉。氘(2H)以水的形式排出体外,而18O以H2O和CO2的形式排出。因此,CO2 可以用18O的消耗减去2H的消耗计算得出。 双标水(DLW)法原理 (From: Doubly Labeled Water for Energy Expenditure, James P. DeLany, Emerging Technologies for Nutrition Research: Potential for Assessing Military Performance Capability. Institute of Medicine (US) Committee on Military Nutrition Research; Carlson-Newberry SJ, Costello RB, editors. Washington (DC): National Academies Press (US); 1997.)这个方法应用到人体的障碍一直是成本过高——需要大量的18O标记水(H218O)来获得...
发布时间: 2017 - 11 - 30
浏览次数:175
温室气体排放量日益扩大引起的气候变化是人类面临的最大挑战之一。为了对其进行可靠的预测,我们需要监测大气变化并了解基础过程。 2015年5月,Los Gatos Research Model 913-0014快速响应N2O分析仪被加入到现有的监控系统中,以监控大气N2O浓度和表面大气N2O浓度的趋势。图表展示了第一个测量结果。    监控系统和位置:    在Hegyhátsál高塔温室气体监测点(匈牙利,46°57'N,16°39'E,248m),大面积涡度协方差系统监测周边主要农业区域的表面大气二氧化碳通量.系统被安装在82m塔上的地面以上,自1997年建成以来一直在持续运行(Haszpra等,2005)。在2015年5月完成了快速响应的N2O分析仪.N2O分析仪的进气口与CO2分析仪的进气口可以相互配合。该配置允许共享操作N2O涡流协方差系统和单个超声波风速计的CO2涡流协方差系统。监控系统以4赫兹运行。 N2O分析仪经过精心校准,符合德国耶拿MPI-BGI准备和认证的4个标准。    N2O浓度的时间变化:    在地面以上96米处,涡流协方差系统每隔14米有一个NOAA气瓶取样点。每周气瓶样品提供了定量比较测量的可能性。平均偏差为0.11&...
发布时间: 2017 - 10 - 31
浏览次数:67
摘要:    已知植物入侵和随后的群落变化会影响营养循环,但大多数此类研究侧重于富营养化效应。针对植物引起的营养减少的效应以及同时发生的机制的研究则相对较少。在这项研究中,我们发现通常作为侵入种的椰子的入侵作用通过间接的影响,中止了外来海洋入侵物种对陆地生态系统的侵入:对鸟类的影响 - 鸟类会尽量避免筑巢在椰子树种群中,因此减少了从海洋环境带来的关键营养物质输入。这些海洋物质输入的下降导致了土壤养分的减少,叶片营养质量的下降,叶片的适度性下降及食草动物的减少。这种营养耗竭的过程比植物种群入侵导致的富营养化模式更为典型。对于空间中外来能量中断对生态系统的影响的研究表明其尚未受到接受群落变化的干扰,如植物群落转变。在热带和亚热带地区的椰子植物入侵的普遍性使得这些研究特别值得注意。    同样重要的是,美洲黑斑病的近况提供了一个强有力的范例,说明植物群落的变化如何可以显著影响同种异体营养的供应,从而重塑生态系统的能量流。 椰子种群转移|间接效应|海鸟|热带岛屿通过刺激自下而上的能量流动,一个独特的营养供应链塑造了大部分生态系统的动态平衡(1,2)。辅助能的这种提高可以引发接收食物网中大量的级联变化(3-5)。近期的几篇文章已经证明,在食物链顶端的外来捕食者可以通过影响这些辅助能的传递(如鸟类)引发生态系统级联效应,从而引发生态系统结构和功能的全面转...
发布时间: 2017 - 10 - 19
浏览次数:54
摘要:    大型水生植物,包括水风信子(Eichhornia crassipes),是热带水生系统中主要的入侵生物之一,它们在改变水与大气之间的气体交换方面可能起着重要的作用。然而,这个系统在温室气体(GHG)排放的全球数据中起到的作用被部分忽视了。本文研究了南印度一个小(0.6 km2)水收集湖的碳(C)流动和温室气体排放,并分析了水生植物对这些排放的影响。我们测量了二氧化碳(CO2)和甲烷(CH4)的排放量,以及在水葫芦群落附近的水分与开放水域中水分的C矿化率和物理化学变量。水葫芦群落附近的CO2和CH4排放量比开放水域减少了57%。然而,在这两个区域的水中,C矿化率没有明显的差异。我们的结论是,水风信子和其他漂浮的大型植物的入侵有可能改变温室气体排放,这一过程可能与区域的C预算有关。 请阅读原文:www.nature.com/articles/srep20424
发布时间: 2017 - 09 - 29
浏览次数:70
【小编注:在本文中,科学家应用美国LGR公司的CO2同位素分析仪测量δ13C、12CO2 及13CO2的浓度值,并与LI-COR公司的LI-8100-103土壤呼吸室连用,测量土壤13CO2的通量,这是在国内及国际上比较新颖的仪器应用方式,值得借鉴。】 Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phasesJiabin Liu1, Keyu Fa1, Yuqing Zhang1, Bin Wu1, Shugao Qin1, and Xin Jia11Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China 摘要:沙漠可表现出强烈的CO2通量下降的特性,这就是显著的碳沉降。 然而,由于无法确定通量测量的稳定性和准确的碳固定地点,这种假设受到强烈的挑战。本研究中,我们在中国北方的毛乌素沙漠中向自然(未杀菌的)土壤中添加13CO2,并量化固相土壤和气相中所添加的13CO2比例。 结果显示自然沙漠土壤吸收13CO2的平均速率为0.28 gm-2...
发布时间: 2017 - 09 - 22
浏览次数:77
201页次11/21首页上一页...  6789101112131415...下一页尾页
Copyright ©2018-2023 北京理加联合科技有限公司
犀牛云提供企业云服务

北京理加联合科技有限公司

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开